a2 United States Patent

Fuller et al.

US009195698B2

US 9,195,698 B2
*Nov. 24, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

(58)

SELECTIVELY RETRIEVING SEARCH
RESULTS IN ACCORDANCE WITH
DIFFERENT LOGICAL RELATIONSHIPS

Applicant: Google Inc., Mountain View, CA (US)

Inventors: Alfred R. K. Fuller, Menlo Park, CA
(US); Max C. Ross, Sunnyvale, CA (US)

Assignee: GOOGLE INC., Mountain View, CA
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/481,764

Filed: Sep. 9,2014

Prior Publication Data
US 2015/0066946 Al Mar. 5, 2015

Related U.S. Application Data

Continuation of application No. 13/118,264, filed on
May 27, 2011, now Pat. No. 8,832,077.

Provisional application No. 61/482,591, filed on May
4,2011.

Int. CL.

GO6F 17/30

U.S. CL

CPC ... GO6F 17/30321 (2013.01); GOG6F 17/30386

(2013.01); GOGF 17/30457 (2013.01); GO6F

17/30477 (2013.01); GO6F 17/30699 (2013.01)

Field of Classification Search

None

See application file for complete search history.

(2006.01)

Index AC 142-AC
(sorted by A, C, Key)

Index BC 142-BC
(sorted by B, C, Key)

(56) References Cited

U.S. PATENT DOCUMENTS

4,325,120 A 4/1982 Colley et al.
4,779,194 A 10/1988 Jennings et al.
4,796,178 A 1/1989 Jennings et al.
5,325,522 A 6/1994 Vaughn
5,381,546 A 1/1995 Servi et al.
5,560,007 A 9/1996 Thai
5,745,890 A 4/1998 Burrows
6,105,019 A 8/2000 Burrows
(Continued)
OTHER PUBLICATIONS

Ben-Gan, Descending Indexes, Index Ordering, Parallelism, and
Ranking Calculations, SQL Server Pro, May 24, 2010, 7 pgs.

(Continued)

Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — Morgan, Lewis & Bockius
LLP

(57) ABSTRACT

A search server system having one or more processors and
memory receives a search query including filter criteria. The
filter criteria specify operands and a logical relationship. In
response to the search query the server identifies index por-
tions sorted in a same sort order. The server identifies match-
ing entities that match the search query by identifying index
entries having a first identifier and matching filter(s) of a first
operand and identifying, index entries having a second iden-
tifier that is sequentially adjacent to the first identifier in the
sort order and matching filter(s) of a second operand. When
index portion(s) associated with the first operand include
index entries having a respective identifier between the first
identifier and the second identifier and matching the filter(s)
of'the first operand, the server marks a respective entity asso-
ciated with the respective identifier as matching the search
query and sends search results to the client.

21 Claims, 13 Drawing Sheets

Index CA 142-CA
(sorted by C, A, Key)

A= C= Key= B= C= Key= C= A= Key=
™\ ™\
0 bar 0 0 bar 0 bar 0 0
0 bar 2 0 bar 2 bar 0 2 .
> Index Portion) I?deé_F:gm?n
0 |fot| 7 (for A=0) o | par | 4 | > :?;e;;‘;mm bar | 1 4 (for G="bar’)
0 foo7 3 0 foo1 5 bar 1 6
! per ¢ 0 foor ! </ foo 0 7 Index Portion
1 bar 6 1 bar 6 foo1 1 5 (for C= “foo1”)
Index Portion
1 |01 | 5 (for A=1) 1 | ot | 7 :;‘;e;:‘;"”” foo7 | 0 3
- Index Portion
1 foo7 1 1 foo7 3 foo7 1 1 (for C= “foo7”)

US 9,195,698 B2

Page 2
(56) References Cited 2006/0235731 Al 10/2006 Gupta et al.
2006/0235737 Al 10/2006 Fleurant et al.
U.S. PATENT DOCUMENTS 2006/0271556 Al 11/2006 Mukherjee et al.
2008/0059080 Al 3/2008 Greiner et al.
6,108,748 A 8/2000 Ofek et al. 2008/0082345 Al 4/2008 Greiner et al.
6,269,382 Bl 7/2001 Cabrera et al. 2009/0198779 Al 8/2009 Agrawal et al.
6,289,334 Bl 9/2001 Reiner et al. 2010/0023502 A1 1/2010 Marlow
6,341,302 Bl 1/2002 Celis 2010/0042602 Al 2/2010 Smyros et al.
6,370,539 Bl 4/2002 Ashby et al. 2010/0082652 Al 4/2010 Jones et al.
6963869 B2 11/2005 Burrows 2010/0281061 Al 11/2010 Chen
7,043,469 B2 5/2006 Goralwalla et al. 2011/0066602 Al 3/2011 Studer et al.
7,058,949 Bl 6/2006 Willen et al. 2011/0119249 Al 5/2011 Flatz et al.
7155716 B2 12/2006 Hooman et al. 2011/0137888 Al 6/2011 Yoo et al.
7243351 B2 7/2007 Kundu 2011/0153575 Al 6/2011 Glasser et al.
7,246,353 B2 7/2007 Forin et al. 2011/0225167 Al 9/2011 Bhattacharjee et al.
7,406,460 B2 7/2008 Burrows 2011/0238654 Al 9/2011 Allen et al.
7467163 Bl 122008 Dodds et al. 2011/0246498 Al 10/2011 Forster
7,516,456 B2 4/2009 Aguilar et al. 2011/0295815 Al 12/2011 Mandagere et al.
7,689,550 B2 3/2010 Lee et al. 2012/0117105 Al 5/2012 Thomas et al.
7,801,864 B2 9/2010 Prahlad et al. 2012/0150820 Al 6/2012 Sankaranarayanan et al.
8,099,422 B2 1/2012 De Bellis 2012/0197928 Al 8/2012 Zhang et al.
8,131,680 B2 3/2012 Prahlad et al. 2012/0330954 Al 12/2012 Sivasubramanian et al.
$185.899 B2 52012 Daly etal 2013/0018867 Al 1/2013 Regan et al.
8392408 BI 3/2013 Fulier 2013/0097599 Al 4/2013 Konik et al.
8,468,167 B2 6/2013 Sathyanarayana et al. 2013/0097608 Al 4/2013 Kessler et al.
8,560,509 B2 10/2013 Xiaetal. 2013/0282765 Al 10/2013 Bhattacharjee et al.
8,635,621 B2 1/2014 Levitan et al.
2003/0088715 Al 5/2003 Chaudhuri et al. OTHER PUBLICATIONS
%883;85;‘88% ﬁ} ;gggi gﬁg?gsal, decipherinfo sys, Column Order in a Composite Index, Systems Engi-
2004/0167873 Al 8/2004 Dettinger et al. neering and RDBMS, May 13, 2008, 4 pgs.
2004/0167904 Al 8/2004 Wen et al. PostgreSQL, PostgreSQL 8.1.3 Documentation, May 4, 2006, 1
2004/0243569 Al 12/2004 Burrows page.
2005/0055355 Al 3/2005 Murthy et al. Quassnoi, Explain Extended, Descending Indexes, Apr. 27, 2009, 8
2005/0228792 Al 10/2005 Chandrasekaran et al. pgs.
2006/0010426 Al 1/2006 Lewis et al. Scharlock, Designing Composite Indexes, Sep. 26, 2008, 5 pgs.
2006/0028488 Al 2/2006 Gabay et al. Rush, Maximizing Detection of Data Inconsistency: The Develop-
2006/0031811 Al 2/2006 Ernst et al. ment of a Consistency Check Interpreter, SCAMC Inc., 1987, pp.
2006/0235730 Al 10/2006 Politano et al. 848-851.

U.S. Patent

Nov. 24, 2015

Search Client
System 102

Browser
110

!

Search
Application
112

Client
102

Sheet 1 of 13

US 9,195,698 B2

Distributed Client-
Server System

/’M

Client
102

r<\>\

Communication
Network(s) 120

N

—

Frontend Server
122

Query Planner
124

Response
Generator 128

Search Server
System 106

 »

-

Query Engine
126

Entity
Database
140

Index(es)
142

Index Generator
130

Figure 1

U.S. Patent Nov. 24, 2015 Sheet 2 of 13 US 9,195,698 B2
Search Client
System 102
202
CPU(s) | Memory
206
, A | ~210
208 ~, Operating System 012
Network Communication Module -
205 —~ Browser/Client Application L~ 110
User Search Web Page |~ 214
Interface Search Application L~ 112-a
®
L
®
112-b
2(4L Network Search Assistant - ”
Interface Data -
[]
[]
[]

Figure 2

U.S. Patent Nov. 24,2015 Sheet 3 of 13 US 9,195,698 B2
Search Server
System 106
2
CPU(s) _/-30 Memory
306 \
Operating System _~ 310
308 —~ 312
Network Communication Module e 129
Front End Server S 124
Query Planner S~ 126
Query Engine - 320
Query Cursor Generator - 09
Query Cursor Translator s 224
Index Portion Identifier s 206
3% Network Filtgr (Index) .Scanrler(s) S~ o
Interface Logical-Relationship Scanner(s) S 240
AND_Scanner -
NOT_Scanner s gji
OR_Scanner
[X X]
L]
L]
]
Response Generator s 1:233
Index Generator = .
Entity Database -~
Index(es) [~ ;g(z)
User Database "
| - 352
Query Cursors
L]
L]
[]

Figure 3

U.S. Patent Nov. 24, 2015 Sheet 4 of 13 US 9,195,698 B2

Entity Database

N

Keys Properties Content

404 402 406
Entity O] O A=0, B=0, C=bar . .. Entity 0 Content
Entity 1 1 A=1, B=0, C=foo7 . .. Entity 1 Content
Entity 2| 2 A=0, B=0, C=bar . .. Entity 2 Content
Entity 3] 3 A=0, B=1, C=foo7 . .. Entity 3 Content
Entity 4 4 A=1,B=0, C=bar ... Entity 4 Content
Entity 5 5 A=1, B=0, C=foo1 ... Entity 5 Content
Entity 6 6 A=1,B=1,C=bar ... Entity 6 Content
Entity 7| 7 A=0, B=1, C=foo1 . .. Entity 7 Content

Figure 4A

US 9,195,698 B2

Sheet 5 0of 13

Nov. 24, 2015

U.S. Patent

gy 2inbi4
4 4
(,200}, =0 10}) €] oo L 9
UoILOd Xapu| (1L=g 10y)
b 400} uoILOd xmvc_A 9 (1=v LotA s
UoILIOg XapU|
00
(100}, =0 J4oj) . Lool . © ’
UOILIOH XapU| -
] |00} g _ 3
\
9 Jeq ¥ yA
0=9 10})
e
(Jeq,=0 o)) < v co_toa xopui S\ | ¢ (0=v o)) < €
UOILIOg XapU|] 100 v UOIIOg XapU| 3
0 Jeq 0 0
\. .
H>®v._ =0 H>®V_ =9 H>®v._ =y

S _ _

(Ao ‘9 AQ pepios) (A9y ‘g Aq pallos) (Aey ‘v AQ pallos)
O-¢vl D Xapy| d-ct|l d xapu| Y-¢rl vV Xapu|

US 9,195,698 B2

Sheet 6 of 13

Nov. 24, 2015

Ov 24nbi4
4 4
(200}, =0 Jo)) I L00} 5 100} L J00]
UoILO4 Xapu| (1=
L =g 10})
€ L0041 Loniog xepy A L 100} (L= Jo}) S L 0O}
UoILOd Xapu|
S Releld le Je
(100}, =0 Jo}) \ 9 g 9 q
UoILOd Xapu| Ve
L eleld l 100} 9 ¥ Jeq
9 Jeq S | OO} 4 ¢ 100}
(0=9 Jo})
(.Jeq,=D Jo}) v 1ed UOILO Xapuj A v 1e9 (0=Vv Joy) L Lool
UOIMOd Xopu| A UoILOd Xapu|
é Jeqg é Jeq Z Jeq
0 Jeg 0 leq 0 Jeq
- .
H\A@V_ =0 H>®v._ =0 H\A@V_ =D

U.S. Patent

_ _ _

(Asy v 'O Aq payios) (Aey 'O ‘g Aq payos) (ko) ‘O ‘v Ag peyios)
VO-CrT VO Xepu| Dg-¢cvl Od xspu| DV-¢rl OV xspuj

U.S. Patent Nov. 24, 2015 Sheet 7 of 13 US 9,195,698 B2

Search Client Search Server
System 102 00 System 106

(]

Send search query 502 L, | Receive search query 516

Search query includes ‘
filter criteria 504
_——————— Identify index portions for search query
| A plurality of I 518
| operands 506 I }
| Alogical | T T T T T g
-] Translate query cursor 520 |
I relationship vl - ——————-
I between l
| operands508 | | | = @0 Y o _
- l | Identify starting location in index portions |
_________ [based on query cursor 526 |
| Search query includes]I !_ __(Figures9a-9B) |
| sort criteria 510 I l

| Search query includes Identify matching entities 530

| aquery cursor 512
————————— | ldentify matching entities with |

i_SeTalzh_qu_ery_s;ec_h‘ie_s] | AND_Scanner 532 |
|a predefined number of L ___ (E'QEESEA;ESE) —_—— :

| results 514 : _———— e ———

| Identify matching entities with I
| NOT_Scanner 534 [
| (Figure 7) I

Identify matching entities with |
| OR_Scanner 536 [
| (Figure 8) I

Generate search results (representations
of matching entities) 542

'

Transmit search results (optionally
including new query cursor) 544

Receive search results 546 [¢—

Figure 5

U.S. Patent Nov. 24, 2015 Sheet 8 of 13 US 9,195,698 B2

Identify Matching Entities with AND_Scanner
600

The plurality of index portions include a first set of one or more index
portions matching the filter(s) of the first operand and a second set of
one or more index portions matching the filter(s) of the second operand
602

L]

Receive, from the first set of index portion(s), information indicative of a
first set of one or more index entries having a first identifier and
matching the filter(s) of the first operand 604 606

Are the first operand and the second operand are the only No
operands?

¢ Yes’\/ 608

Does the second set of index portion(s) includes a set of one or
more index entries having the first identifier and matching the
filter(s) of the second operand?

} No “~— 610 l Ves 614

— — —— — — —— — ———

|Mark an entity associated with the, |Mark an entity associated with the
| first identifier as not matching the first identifier as matching the
| search query 612 search query 616

______ vy v

Receive, from the second set of one or more indexes, a second
identifier for a second set of one or more index entries having the
second identifier and matching the filter(s) of the second operand,

where the second identifier is sequentially adjacent to the first identifier
in the sort order in the second set of index portion(s) 618

v

Request, from the first set of index portion(s), information indicative of a
set of one or more index entries from the first set of index portion(s)
having the second identifier and matching the Tfilter(s) of the first
operand 620

v

Repeat operations 604-620 with roles of first operand and second
operand reversed using the second identifier in place of the first
identifier 622

Identify a next set of one or more index entries in the first set of index |
portion(s) having a next identifier and matching the filter(s) of the first
operand and repeat operations 604-622 for the next identifier 624 :

Figure 6A

U.S. Patent Nov. 24, 2015 Sheet 9 of 13 US 9,195,698 B2

4

The plurality of operands includes a plurality of subsequent (second,
third, etc.) operands each associated with one or more filters and a
subsequent set of one or more index portions 630

Y

Request, from a subsequent (second, third, etc.) set of index portion(s),
information indicative of a set of one or more index entries having a
current last matching (first, second, etc.) identifier and matching the

filter(s) of the subsequent (second, third, etc.) operand 632

Y

Does the subsequent (second, third, etc.) set of index portion(s)
include a set of one or more index entries having the current last
matching (first, second, etc.) identifier and matching the filter(s) of
the subsequent (second, third, etc.) operand?

No - 634 Yes”™ o 642

| Mark entity associated with last |
matching identifier as not
matching the search query 636 :

_____ I !

Receive a next last matching Retain current last matching (first)
(second) identifier that is identifier 644
sequentially adjacent to the
current last matching (first)
identifier in the sort order in the
subsequent set of index portion(s)

638 646
+ / Have all operands
Identify a next “subsequent No, returned the current
operand” 640 last matching
A identifier?

Yes/-\/ 648

Mark entity associated with
current last matching identifier as
matching the search query 650

Y

Receive a next last matching identifier that is sequentially adjacent to
the current last matching identifier in the sort order in the subsequent
set of index portion(s) 652

Figure 6B

U.S. Patent Nov. 24, 2015 Sheet 10 of 13 US 9,195,698 B2

Identify Matching Entities with NOT_Scanner
00

Identify a first set of one or more index entries in the first set of index
portion(s) having a first identifier and matching the filter(s) of the first
operand 702

v

Does the second set of index portion(s) include a set of one or
more index entries having the first identifier and matching the
filter(s) of the second operand?

No “\— 708 ! Yes™— 704

Mark an entity associated with the| |Mark an entity associated with the]
first identifier as matching the | first identifier as not matching the I
search query 710 | search query 706 I

y y

Identify, in the second set of index portion(s), a second set of one or
more index entries having a second identifier that is sequentially
adjacent to the first identifier in the sort order and matching the filter(s)
of the second operand 712

v

Does the first set of index portion(s) include a set of one or more
index entries having the second identifier and matching the
filter(s) of the first operand?

No \— 714 Yes™ \— 716
e —— —— —— — — —— — — -I

| Mark an entity associated with theI
| second identifier as not matching I
| the search query 718

Does the first set of index portion(s) include a respective set of
one or more index entries having a respective identifier between
the first identifier and the second identifier and matching the
filter(s) of the first operand?

No “\— 720 ¢ Yes™— 722

Mark a respective entity
associated with the respective
identifier as matching the search
query 724

______ VY _____

| Identify a next set of one or more index entries in the first set of index
| portion(s) having a next identifier and matching the filter(s) of the first
| operand and repeat operations 702-724 for the next identifier 730

1
I
I

U.S. Patent

Nov. 24, 2015

Sheet 11 of 13

Identify Matching Entities with OR_Scanner

800

US 9,195,698 B2

Identify a plurality of candidate identifiers including a respective candidate
identifier for each respective operand in the plurality of operands 802

Identify, in the first set of
index portion(s), a first set of
one or more index entries
having a first identifier with a
value closest to a predefined
end of a range of identifier
values in the first set of index
portion(s) and matching the
filter(s) of the first operand,
where the first identifier
comprises the respective
candidate identifier for the first
operand 804

Identify, in the second set of
index portion(s), a second set
of one or more index entries
having a second identifier with
a value closest to the
predefined end of the range of
identifier values in the second
set of index portion(s) and
matching the filter(s) of the
second operand, where the
second identifier comprises
the respective candidate
identifier for the second

operand 806

y

y

—

Compare the plurality of candidate identifiers to each other to identify a

candidate identifier that is closest to the predefined end of the range of identifier
values 808

Which candidate identifier is closest to the predefined end of the range of
identifier values?

Identifier

l First —~_ 810

Identifier

Mark an entity associated with
the first identifier as matching
the search query 812

Mark an entity associated with
the second identifier as
matching the search query
818

!

!

Identify, in the first set of
index portion(s), a third set of
one or more index entries
having a third identifier that is
sequentially adjacent to the
first identifier in the sort order
and matching the filter(s) of
the first operand 814

Identify, in the second set of
index portion(s), a fourth set
of one or more index entries
having a fourth identifier that
is sequentially adjacent to the
second identifier in the sort
order and matching the
filter(s) of the second operand
820

l Second,\/816 l

Figure 8

US 9,195,698 B2

U.S. Patent Nov. 24, 2015 Sheet 12 of 13

Search Server

Search Client
System 106

System 102

Receive first search query 204

- ¢

Send first search query 902

Generate a first set of search results
corresponding to the first search query
by searching in a first set of one or more

index portions (Figure 5) 906

Generate a query cursor corresponding

to the search query. The query cursor

indicates a location, in the first set of

index portions, of a respective index

entry corresponding to a respective

result in the first set of search results.
908

l

Receive search results for

first search query 912 Send, to the client, a representation of at

i_SgaE:h_r egufs n cl_u dTa 1 |4—— least a portion of the first set of search
| results and the query cursor 910

| querycursor 914 |

Send second search query
920
Receive second search query 930

Including query cursor | [

922

Figure 9A

U.S. Patent Nov. 24, 2015 Sheet 13 of 13 US 9,195,698 B2

4

Generate a second set of search results
corresponding to the second search
query by searching in a second set of
one or more index portions starting at a
location in the second set of index
portions identified using the received
query cursor 932

Mranslate the received query cursorl
I

934

———— |

I

I

| | Decompose the query cursor | |
| |into a plurality of components | [
L 936 ||
|l - - --"—"——- [
| } |
: | Generate a translated query | |
I | cursor corresponding to the | |
| | received search query using | |
I | one or more of the |
| components 938 ||
e - -
| J |
= |
|| Identify a location in a second | |
I set of one or more index | |
I | portions to start performing | |
I | the current search query | |
I I
I I
! |

I based the translated query
| cursor 940

Generate a new query cursor 942

!

Send search results including
Receive search results for representation of at least a portion of the
second search query 946 second set of results; (optionally
including new query cursor) 944

Figure 9B

US 9,195,698 B2

1
SELECTIVELY RETRIEVING SEARCH
RESULTS IN ACCORDANCE WITH
DIFFERENT LOGICAL RELATIONSHIPS

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 13/118,264, filed May 27, 2011, which claims priority to
U.S. Provisional Patent Application No. 61/482,591, filed
May 4, 2011, which are incorporated herein by reference in
their entirety.

This application is related to U.S. patent application Ser.
No. 13/118,254, now U.S. Pat. No. 8,745,034, filed on May
27, 2011, 2011, entitled “Selectively Retrieving Search
Results in Accordance with Predefined Sort Criteria,” which
application is incorporated by reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 13/118,277, Now U.S. Pat. No. 8,392,408, filed on May
27, 2011, entitled “Coordinating Successive Search Queries
using a Query Cursor,” which application is incorporated by
reference herein in its entirety.

This application is related to U.S. patent application Ser.
No. 13/118,284, now U.S. Pat. No. 8,380,704, filed on May
27, 2011, entitled “Coordinating Different Search Queries
using a Translated Query Cursor,” which application is incor-
porated by reference herein in its entirety.

FIELD OF THE INVENTION

The present invention relates generally to the field of dis-
tributed client-server computer network systems, and in par-
ticular, to a system and method for efficiently searching a
large number of entities.

BACKGROUND OF THE INVENTION

Every day, people submit millions of search queries, many
of which are transmitted over communication networks to
search server systems. Users have come to expect nearly
instantaneous search results (e.g., search results that are pro-
duced with very low latency) when performing search queries
even when searching through large data sets.

Conventional approaches to processing search queries tend
to have search times that scale with the size of the data set over
which the search is being performed. More specifically, in
many conventional search implementations, the entire index
is searched for index entries matching the search query. Thus,
in these implementations indexes for large data sets require a
search over a larger number of index entries. Moreover, when
a search query includes multiple operands, typically an inter-
mediate result set including representations of all of the data
items matching each operand is pulled into memory and
compared with intermediate result sets for other operands in
accordance with the search query. For a large data set, these
intermediate result sets can be very large, and consequently,
using conventional approaches to processing search queries is
inefficient and unduly time consuming. These and other prob-
lems with conventional approaches to processing search que-
ries described above are reduced or eliminated by the systems
and methods described below.

SUMMARY

It would be advantageous to provide a system and method
for selectively retrieving search results in response to a search
query, where the time required to perform the search query
scales roughly with the size of the result set rather than the

20

25

30

35

40

45

50

55

60

2

size of the overall data set. In particular, an approach that
avoids pulling large intermediate result sets into memory
would be particularly advantageous and would dramatically
reduce latency and increase efficiency of performing search
queries over large sets of data. Such an approach has an
additional advantage that the latency can be easily controlled
by adjusting the number of search results requested (e.g.,
reducing the number of search results requested reduces
search time by a corresponding amount). For example, if only
twenty search results can be displayed (e.g., on a search result
page or in an email inbox), the search query can stop once
twenty results (the twenty most relevant search results or
twenty most recent email messages) have been retrieved,
thereby limiting the search time to the search time required to
produce twenty search results without regard to the size of the
set of data or even the ultimate size of the result set.

In some embodiments, a method is performed at a server
system having one or more processors and memory storing
one or more programs for execution by the one or more
processors so as to perform the method. The method includes
receiving a search query including filter criteria and sort
criteria. The filter criteria specify a plurality of operands
including a first operand associated with one or more filters, a
second operand associated with one or more filters and a
logical relationship between the plurality of operands. The
sort criteria specify a set of one or more predefined sort
parameters and corresponding sort directions for sorting
index entries in a predefined sort order. The method further
includes, in response to the search query identifying a plural-
ity of index portions for the filter(s) of the first operand and the
filter(s) of the second operand, where index entries in the
plurality of index portions are sorted in the predefined sort
order, and each respective index entry in the plurality of index
portions includes an identifier representative of a value for the
predefined sort parameter and a unique identifier for a respec-
tive entity associated with the respective index entry. The
method also includes identifying one or more matching enti-
ties that match the search query, including identifying match-
ing index entries in the plurality of index portions in accor-
dance with the logical relationship between the plurality of
operands by comparing identifiers for index entries matching
the filter(s) of the first operand with identifiers for index
entries matching the filter(s) of the second operand and
sequentially retrieving the identifiers for the matching index
entries corresponding to matching entities from the plurality
of'index portions in the predefined sort order. After identify-
ing the matching entities, the method includes transmitting
representations of one or more of the matching entities to the
client.

In some embodiments, a method is performed at a server
system having one or more processors and memory storing
one or more programs for execution by the one or more
processors so as to perform the method. The method includes
receiving, from a client, a search query including filter crite-
ria. The filter criteria specify a plurality of operands including
a first operand associated with one or more filters, a second
operand associated with one or more filters and a logical
relationship between the plurality of operands. The method
further includes, in response to the search query identifying a
plurality of index portions including a first set of one or more
index portions matching the filter(s) of the first operand and a
second set of one or more index portions matching the filter(s)
of the second operand, where index entries in the first set of
index portion(s) and the second set of index portion(s) are
sorted in a same sort order in accordance with identifiers for
the index entries. The method also includes identifying one or
more matching entities that match the search query, including

US 9,195,698 B2

3

identifying a first set of one or more index entries in the first
set of index portion(s) having a first identifier and matching
the filter(s) of the first operand, identifying, in the second set
of'index portion(s), a second set of one or more index entries
having a second identifier that is sequentially adjacent to the
first identifier in the sort order and matching the filter(s) of the
second operand. The method also includes, when the first set
of index portion(s) includes a respective set of one or more
index entries having a respective identifier between the first
identifier and the second identifier and matching the filter(s)
of the first operand, marking a respective entity associated
with the respective identifier as matching the search query.
After identifying the matching entities, the method includes
transmitting representations of one or more of the matching
entities to the client.

In some embodiments, a method is performed at a server
system having one or more processors and memory storing
one or more programs for execution by the one or more
processors so as to perform the method. The method includes
receiving, from a client, a search query including filter crite-
ria, where the filter criteria specify a plurality of operands
including a first operand associated with one or more filters, a
second operand associated with one or more filters and a
logical relationship between the plurality of operands. The
method further includes, in response to the search query
identifying a plurality of index portions including a first set of
one or more index portions matching the filter(s) of the first
operand and a second set of one or more index portions
matching the filter(s) of the second operand, where index
entries in the first set of index portion(s) and the second set of
index portion(s) are sorted in a same sort order in accordance
with identifiers for the index entries. The method also
includes identifying one or more matching entities that match
the search query by identifying a plurality of candidate iden-
tifiers including a respective candidate identifier for each
respective operand in the plurality of operands. The identify-
ing includes identifying, in the first set of index portion(s), a
first set of one or more index entries having a first identifier
with a value closest to a predefined end of a range of identifier
values in the first set of index portion(s) and matching the
filter(s) of the first operand, where the first identifier com-
prises the respective candidate identifier for the first operand.
The identifying also includes identifying, in the second set of
index portion(s), a second set of one or more index entries
having a second identifier with a value closest to the pre-
defined end of the range of identifier values in the second set
of index portion(s) and matching the filter(s) of the second
operand, where the second identifier comprises the respective
candidate identifier for the second operand. The method fur-
ther includes, after the identifying, comparing the plurality of
candidate identifiers to each other to identify a candidate
identifier that is closest to the predefined end of the range of
identifier values. When the first identifier is the candidate
identifier closest to the predefined end of the range of identi-
fier values, the method includes marking an entity associated
with the first identifier as matching the search query and
identifying, in the first set of index portion(s), a third set of
one or more index entries having a third identifier that is
sequentially adjacent to the first identifier in the sort order and
matching the filter(s) of the first operand. When the second
identifier is the candidate identifier closest to the predefined
end of the range of identifier values, the method includes
marking an entity associated with the second identifier as
matching the search query and identifying, in the second set
of index portion(s), a fourth set of one or more index entries
having a fourth identifier that is sequentially adjacent to the
second identifier in the sort order and matching the filter(s) of

15

25

30

40

45

50

4

the second operand. After identifying the matching entities,
the method includes transmitting representations of one or
more of the matching entities to the client.

In some embodiments, a method is performed at a server
system having one or more processors and memory storing
one or more programs for execution by the one or more
processors so as to perform the method. The method includes
receiving, from a client, a first search query, and in response
to the first search query generating a first set of search results
corresponding to the first search query by searching in a first
set of one or more index portions and generating a query
cursor corresponding to the search query, where the query
cursor indicates a location, in the first set of index portions, of
a respective index entry corresponding to a respective result
in the first set of search results. The method further includes
sending, to the client, a representation of at least a portion of
the first set of search results and the query cursor. After
sending the query cursor to the client, the method includes
receiving, from the client, a second search query including the
query cursor and in response to the second search query,
generating a second set of search results corresponding to the
second search query by searching in a second set of one or
more index portions starting at a location in the second set of
index portions identified using the query cursor and sending,
to the client, arepresentation of at least a portion of the second
set of results. The first search query is different from the
second search query and/or the second set of index portions
includes at least one index portion not included in the first set
of index portions.

In some embodiments, a method is performed at a server
system having one or more processors and memory storing
one or more programs for execution by the one or more
processors so as to perform the method. The method includes
receiving, from a client, a current search query including a
query cursor corresponding to a prior search query, the query
cursor corresponding to a location in a first set of one or more
index portions used to perform the prior search query and in
response to the current search query decomposing the query
cursor into a plurality of components and generating a trans-
lated query cursor corresponding to the received search query
using one or more of the components. After generating the
translated query cursor, the method includes identifying a
location in a second set of one or more index portions to start
performing the current search query based the translated
query cursor and generating a set of search results corre-
sponding to the current search query by searching in the
second set of index portions starting at the identified location.
After generating the set of search results, the method includes
sending, to the client, a representation of at least a portion of
the set of search results.

In accordance with some embodiments, a computer system
(e.g., asearch client system or search server system) includes
one or more processors, memory, and one or more programs;
the one or more programs are stored in the memory and
configured to be executed by the one or more processors and
the one or more programs include instructions for performing
the operations of the method described above. In accordance
with some embodiments, a non-transitory computer readable
storage medium has stored therein instructions which when
executed by one or more processors, cause a computer system
(e.g., a search client system or search server system) to per-
form the operations of the methods described above.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the disclosed embodiments,
reference should be made to the Description of Embodiments

US 9,195,698 B2

5

below, in conjunction with the following drawings in which
like reference numerals refer to corresponding parts through-
out the figures.

FIG. 1 is a block diagram illustrating a distributed client-
server system, in accordance with some embodiments.

FIG. 2 is a block diagram illustrating a search client sys-
tem, in accordance with some embodiments.

FIG. 3 is a block diagram illustrating a search server sys-
tem, in accordance with some embodiments.

FIG. 4A is a block diagram illustrating an entity database
storing information about entities having properties, unique
identifiers (keys) and content, in accordance with some
embodiments.

FIG. 4B is a block diagram illustrating a set of indexes for
different properties for a plurality of entities having multiple
properties and unique identifiers (keys), in accordance with
some embodiments.

FIG. 4C is a block diagram illustrating a set of indexes for
different properties for a plurality of entities having multiple
properties and unique identifiers (keys), where the indexes are
sorted in accordance with values of one of the properties, in
accordance with some embodiments.

FIG. 5 includes a flow chart illustrating a method for
receiving and processing queries at a search server system
and returning search results, in accordance with some
embodiments.

FIGS. 6 A-6B include a flow chart illustrating a method for
identifying matching entities in index portions of one or more
indexes when a logical relationship between operands of a
search query is a Boolean AND, in accordance with some
embodiments.

FIG. 7 includes a flow chart illustrating a method for iden-
tifying matching entities in index portions of one or more
indexes when a logical relationship between operands of a
search query is a Boolean NOT, in accordance with some
embodiments.

FIG. 8 includes a flow chart illustrating a method for iden-
tifying matching entities in index portions of one or more
indexes when a logical relationship between operands of a
search query is a Boolean OR, in accordance with some
embodiments.

FIGS. 9A-9B include a flow chart illustrating a method for
coordinating successive search queries using a query cursor,
in accordance with some embodiments.

DESCRIPTION OF EMBODIMENTS

The present invention is directed to a client-server system
and corresponding method of organizing, storing and index-
ing information (e.g., entities) so as to enable the information
to be efficiently retrieved in response to search queries.

FIG. 1 includes a block diagram illustrating an exemplary
distributed client-server system 100 for performing searches
data. System 100 includes one or more Search Client
System(s) 102 (also referred to herein as “Client 102”), a
Search Server System 106 (also referred to herein as “Server
106) and a Communication Network 120 for connecting
Clients 102 to Search Server System 106. Communication
Network 120 optionally includes the Internet, one or more
local area networks (LLANs), one or more wide area networks
(WANSs), other types networks, or a combination of such
networks.

A Client 102 optionally includes a Browser 110 and a
Search Application 112. Browser 110 can be a general pur-
pose Internet browser (sometimes called a Web browser)
having a browser window used for displaying a search query
entry interface and search query results. Search query results

10

15

20

25

30

35

40

45

50

55

60

65

6

are, optionally rendered by Browser 110 using hypertext
markup language (HTML) or any other appropriate rendering
methodology. Alternatively, a search query is, optionally,
submitted via a stand-alone Search Application 112. After a
user submits a request for representations of entities matching
a search query through Browser 110 or a stand-alone Search
Application 112, Client 102 relays the request to Server 106
via Communication Network 120. Server 106 identifies a
plurality of matching entities and transfers search results
including representations of the matching entities and,
optionally, a set of display information back to Client 102.
Search Application 112 and/or Browser 110 uses the search
results and display information to render a set of search
results at Client 102.

Search Server System 106 includes Frontend Server 122,
Query Planner 124, Query Engine 126, Response Generator
128, Index Generator 130, Entity Database 140 and one or
more Indexes 142. Index Generator 130 processes informa-
tion about the entities that is stored in Entity Database 140 to
produce Indexes 142 for use by Query Engine 126 when
performing a search query. Alternatively or in addition, Index
Generator 130 retrieves information about entities from a
remote source such as a remote database or web crawler that
systematically retrieves information from a plurality of
remote sources (e.g., websites). These operations are typi-
cally performed by Index Generator 130 prior to receiving the
search query at Server 106. Performing these processes prior
to receiving the search query increases the speed with which
search results can be retrieved, thereby reducing latency of
the search operation and returning results to users more
quickly. In addition, Index Generator 130 typically continues
to update Indexes 142 in between queries.

Frontend Server 122 relays requests from Clients 102 to
Query Planner 124, which optionally plans a search query by
selecting an order to apply filters and sort orders specified in
the search query and transmits the planned search query to
Query Engine 126. The Query Planner 124 plans the search
query so as to improve the performance characteristics of the
search query (e.g., by determining an order to apply filters
that reduces the time to perform the search query and/or
reduces the maximum or total processor usage). Alterna-
tively, Query Planner 124 is optionally part of the Search
Application, which transmits the search query along with
information specifying an order to apply filters and sort
orders directly to Frontend Server 122, which are subse-
quently transmitted to Query Engine 126. Query Engine 126
identifies, in Indexes 142, indexes and index portions adapted
for responding to the search query and performs the search
query on the identified indexes and/or index portions to iden-
tify search results.

Typically, the matching entities are identified one at a time
orinsmall batches in a predefined order (e.g., an order defined
by the search query or a system defined order). Thus when the
indexes and/or index portions are sorted by a predefined prop-
erty such as relevance or recency, Query Engine 126 can
easily retrieve the twenty most relevant/recent results and
then stop searching the identified indexes or index portions.
After identifying matching entities, Query Engine 126
retrieves information about the matching entities from Entity
Database 140 and passes the information to Response Gen-
erator 128. Response Generator 128 generates a response
including at least a portion of the information about the
matching entities. Response Generator 128 also, optionally,
determines display information for the search results. The
search results and, optionally, display information passed to
Frontend Server 122, which in turn passes the results to Client
102 via Communication Network 120 for display at Client
102 (e.g., via Browser 110 or Search Application 112).

US 9,195,698 B2

7

FIG. 2 is a block diagram illustrating a Search Client Sys-
tem 102 in accordance with some embodiments. Client 102
typically includes one or more processing units CPU(s) 202,
one or more network or other Communication Interfaces 204,
Memory 206 a User Interface 205 comprising a display
device and a keyboard, mouse, touchpad, touchscreen or
other input device, and one or more Communication Buses
208 for interconnecting these components. Memory 206 typi-
cally includes high-speed random access memory, such as
DRAM, SRAM, DDR RAM or other random access solid
state memory devices; and optionally includes non-volatile
memory, such as one or more magnetic disk storage devices,
optical disk storage devices, flash memory devices, or other
non-volatile solid state storage devices. Memory 206 option-
ally includes one or more storage devices remotely located
from the CPU(s) 202. Memory 206, or alternatively the non-
volatile memory device(s) within Memory 206, comprises a
non-transitory computer readable storage medium. In some
embodiments, Memory 206 or alternatively the non-transi-
tory computer readable storage medium stores the following
programs, modules and data structures, or a subset thereof:

an Operating System 210 that includes procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a Network Communication Module (or instructions) 212
that is used for connecting Search Server System 102 to
other computers (e.g., Search Server System 106 or
Other Message Server Systems 108) via one or more
Network Interfaces 204 (wired or wireless) and one or
more Communication Networks 120 (FIG. 1), such as
the Internet, other wide area networks, local area net-
works, metropolitan area networks, and so on;

a Web Browser 110 for loading web pages such as a Search
Web Page 214, which optionally includes code for
executing a Search Application 112-a as an embedded
application in Search Web Page 214, where Search
Application 112-a sends requests to Server 106 and
displays data received from Server 106;

a dedicated Search Application 112-5 (e.g., a stand-alone
email client) for sending requests to Server 106 and
displaying data received from Server 106; and

optionally, Data 216 such as cached search data (e.g.,
recently accessed search results, recent search queries,
etc.), stored query cursors generated at Client 102 or
received from Server 106 along with search results from
one or more prior search queries.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures or modules, and thus various
subsets of these modules may be combined or otherwise
rearranged in various embodiments. In some embodiments,
Memory 206 optionally stores a subset of the modules and
data structures identified above. Furthermore, Memory 206
may stores additional modules and data structures not
described above.

FIG. 3 is a block diagram illustrating a Search Server
System 106 in accordance with some embodiments. Search
Server System 106 typically includes one or more processing
units CPU(s) 302, one or more network or other Communi-
cations Interfaces 308, Memory 306, and one or more Com-
munication Buses 308 for interconnecting these components.
Memory 306 includes high-speed random access memory,
such as DRAM, SRAM, DDR RAM or other random access
solid state memory devices; and optionally includes non-

10

15

20

25

30

35

40

45

50

55

60

65

8

volatile memory, such as one or more magnetic disk storage
devices, optical disk storage devices, flash memory devices,
or other non-volatile solid state storage devices. Memory 306
optionally includes one or more storage devices remotely
located from the CPU(s) 302. Memory 306, or alternatively
the non-volatile memory device(s) within Memory 306, com-
prises a non-transitory computer readable storage medium. In
some embodiments, Memory 306 or alternatively the non-
transitory computer readable storage medium stores the fol-
lowing programs, modules and data structures, or a subset
thereof:

an Operating System 310 that includes procedures for han-
dling various basic system services and for performing
hardware dependent tasks;

a Network Communication Module (or instructions) 312
that is used for connecting Server 106 to other computers
(e.g., Client 102) via one or more Network Interfaces
304 (wired or wireless) and one or more Communication
Networks 102 (FIG. 1), such as the Internet, other wide
area networks, local area networks, metropolitan area
networks, and so on;

a Frontend Server 122 for coordinating communication
between Server 106, Clients 102 and any other computer
systems with which Server 106 communicates;

a Query Planner 124 for converting a search query received
from Client 102 into a search query to be executed by
Query Engine 126; for multi-step search queries, the
converting optionally includes revising the order and/or
composition of the steps so as to improve the speed
and/or efficiency of performing the search query (e.g.,
by reducing the number of required index scans and/or
performing steps that are likely to eliminate a large
number of non-matching entities earlier in the search
process);

a Query Engine 126 for performing the search query by
identifying index portions and searching the index por-
tions using the search query;

a Query Cursor Generator 320 for generating a query
cursor that indicates a location in the index portions in
at which Query Engine 126 stopped retrieving iden-
tifiers for matching index entries, the query cursor is,
optionally, sent along with results to serve as a “book-
mark” if the Client decides to resume the search at the
stopping point;

a Query Cursor Translator 322 for receiving, along with
a new search query, a query cursor generated in
response to a prior search query, decomposing the
query cursor and determining a corresponding new
query cursor that indicates a location in index portions
associated with the new search query corresponding
to a stopping point in the index portions associated
with the prior search query;

an Index Portion Identifier 324 for identifying index
portions that are adapted for responding to a search
query (e.g., index portions that match all of the filters
of a search query and are sorted in same sort order,
such as a sort order specified by the search query);

one or more Filter (Index) Scanners 326 for scanning
through an index or index portion to retrieve an iden-
tifier of one or more next matching results (e.g.,
matching index entries that are sequentially adjacent
to the last matching index entry or query cursor posi-
tion in the sort order) in the index or index portion;

one or more Logical-Relationship Scanners 328 for
retrieving identifiers of matching entities from the
index portions identified by Index Portion Identifier
324 in accordance with the received search query, the

US 9,195,698 B2

9

Logical-Relationship Scanners 328 typically include
one or more of an AND_Scanner 340 (described in
greater detail below with reference to FIGS. 6A-6B),
a NOT_Scanner 342 (described in greater detail
below with reference to FIG. 7) and an OR_Scanner
(described in greater detail below with reference to
FIG. 8);
aResponse Generator 128 for organizing information con-
cerning matching entities identified by Query Engine
126 and generating display information to be transmit-
ted to Client 102, where the display information speci-
fies formatting of the search results at Client 102;
an Index Generator 130 for generating indexes for use in
executing search queries, in some implementations
Index Generator 130 generates a large number of
indexes (e.g., at least one index for each property that
can beused to sort and/or filter search results) so that for
each possible combination of filters and sort orders in a
search query, there exists an index including an index
portion where the index entries matching the combina-
tion of filters are arranged in a contiguous block of index
entries sorted in the sort order;

optionally, an Entity Database 140 storing entities or infor-

mation about entities;
one or more Indexes 142 which store information about
entities and properties of the entities, typically the
Indexes 142 are each sorted in accordance with values of
the properties for the entities, as described in greater
detail below with reference to FIGS. 4A-4C;

optionally, a User Database 350 storing information about
users and user search preferences, in some embodiments
when the entities are user specific (e.g., a collection of a
user’s photos, emails or other documents), the user data-
base identifies which entities and indexes the user has
authority to access, the User Database 350, optionally,
stores other user account information; and

optionally, Query Cursors 352 received from Client 102 or

generated by Query Cursor Generator and sent to Client
102 in response to prior search queries, alternatively
query cursor are not stored at Server 106 and are instead
received from Client 102 on an as needed basis in con-
junction with requests to perform search queries using
the query cursors.

Each of the above identified elements may be stored in one
or more of the previously mentioned memory devices, and
corresponds to a set of instructions for performing a function
described above. The above identified modules or programs
(i.e., sets of instructions) need not be implemented as separate
software programs, procedures or modules, and thus various
subsets of these modules may be combined or otherwise
rearranged in various embodiments. In some embodiments,
Memory 306 optionally stores a subset of the modules and
data structures identified above. Furthermore, Memory 306
optionally stores additional modules and data structures not
described above.

Although FIG. 3 shows a “Search Server System” 106 FI1G.
3 is intended more as functional description of the various
features which may be present in a set of servers than as a
structural schematic of the embodiments described herein. In
practice, and as recognized by those of ordinary skill in the
art, items shown separately could be combined and some
items could be separated. For example, some items shown
separately in FIG. 3 could be implemented on single servers
and single items could be implemented by one or more serv-
ers. The actual number of servers used to implement a Search
Server System 106 and how features are allocated among
them will vary from one implementation to another, and

10

20

25

30

35

40

45

50

55

60

65

10

optionally depends in part on the amount of data traffic that
the system must handle during peak usage periods as well as
during average usage periods.

Entities and Indexes

FIG. 4A illustrates an entity database storing information
about entities (data objects) having keys 402 (unique identi-
fiers), properties 404 and content 406 of the entities according
to some embodiments. An entity has one or more properties,
each property having one or more possible values of different
types, including one or more of: integers, floating point val-
ues, strings, dates, and binary data. A property can have one or
more values. For example, the property “tag” for a particular
entity could have a value for each tag associated with the
particular entity (e.g., “vacation” “mom” “California,” etc.
could all be values for the property “tag”). A property with
multiple values can have values of mixed types (e.g., for a
particular entity a property could have one value that is an
integer and another value that is a string). In some implemen-
tations, a search query including a filter (e.g., property=value)
for a property with multiple values tests whether any of the
values meets the filter. Thus, in these implementations, if a
respective entity includes properties A=1 and A=2, a search
for all entities with the property A=1 will return the respective
entity. Additionally, it should be understood that the values of
these properties can be used either as predefined sort param-
eters or to determine whether respective entities meet filter
criteria.

Each entity also has a key that uniquely identifies the entity,
also called a “unique identifier” for the entity. In some imple-
mentations, a key is simply an Entity ID that is associated
with the entity (e.g., assigned by Server 106). In other imple-
mentations the key includes a kind and the Entity ID. The kind
categorizes the entity so that it can more easily be identified
and retrieved. An entity can be requested by Client 102 either
by submitting a request for an entity associated with a par-
ticular key, or by requesting performance of a search query
that matches the entity’s properties. A search query that
matches the entities properties will typically first produce the
key for the matching entity and then retrieve the entity or
information representative of the entity from Entity Database
140. Unlike some conventional relational databases, in some
implementations, Entity Database 140 does not require that
all entities of a given kind have the same properties.

FIG. 4B illustrates exemplary Indexes 142 for different
properties for a plurality of entities having multiple properties
and unique identifiers (keys). The indexes (Index A 142-A,
Index B 142-B and Index-C 142-C) illustrated in F1G. 4B are
for responding to queries that do not have custom (user speci-
fied or system specified) sort order. Thus, each index has a
plurality index entries (rows) sorted in accordance with val-
ues of a property and a key (columns). In some implementa-
tions, there is an index entry for each value of a property of an
entity. Thus, if there is a multi-valued property, there will be
at least two index entries for the entity (e.g., two index entries
in the same index with the same key but different filter val-
ues), one sorted in accordance with the first value of the
property and another sorted in accordance with the second
value of the property.

Each of the exemplary indexes in FIG. 4B is adapted for
responding to queries including a filter for the respective
property included in the index (e.g., A, B, or C for Index A
142-A, Index B 142-B or Index C 142-C, respectively). The
indexes include portions that are indicated by the values of the
property. For example, Index A 142-A has two portions, a
portion where A=0 and a portion where A=1, and these por-

US 9,195,698 B2

11

tions are internally contiguous portions (e.g., a contiguous set
of index entries where A=0 and a contiguous set of index
entries where A=1) because Index A 142-A is sorted in accor-
dance with the values of property A. Similarly, Index B 142-B
also has two portions, a portion where B=0 and a portion
where B=1, and these portions are internally contiguous por-
tions (e.g., a contiguous set of index entries where B=0 and a
contiguous set of index entries where B=1) because Index B
142-B is sorted in accordance with the values of property B.
Index C 142-C is sorted in a similar manner, but has three
different portions because there are three different values for
property C, the portions for Index C 142-C include: a portion
where C=bar, a portion where C=fool, and a portion where
C=f007, and these portions are internally contiguous portions
because Index C 142-C is sorted alphabetically in accordance
with the values of property C. Also, it should be understood
that each of the index portions are internally sorted in a
default sort order (e.g., the index entries within a portion are
sorted by key, which is not typically a user selected sort order,
as the values of the keys are not usually known by the user and
frequently do not correspond to any property that is relevant
to the user).

When a search query is received, indexes are selected to
perform the search query based on the properties that are
included in the index. Moreover, when processing a search
query specifying a filter, Server 106 (or Query Engine 126 of
Server 106) only needs to look for index entries matching the
search query in the portion of the index matching the filter,
because the index is sorted so that index entries in all other
sections of the index do not match the filter and thus are
irrelevant to the search query. For example, for a search query
including the filter A=0, results (e.g., identifiers of index
entries) will only be retrieved from the portion of Index A that
corresponds to A=0, and the portion of Index A where A=1
will be ignored. Thus, in some embodiments, for each prop-
erty for which a search can be performed, there is an index
that is sorted in accordance with values of that property.

In one implementation, Server 106 provides search ser-
vices for a plurality of different applications, and each appli-
cation has its own set of indexes for performing search que-
ries. In these implementations each application defines its
indexes in a configuration file. Additionally, indexes for some
types of commonly received queries are optionally provided
automatically by Server 106. During development of the
application, Server 106 can automatically add suggestions for
new indexes to create to the configuration file when it encoun-
ters a search query that cannot be performed because indexes
adapted for performing the search query have not been cre-
ated. Additionally, a developer of the application can manu-
ally specify indexes to be created in anticipation of search
queries that are likely to be executed by the application. As the
entities in Entity Database 140 are updated, Server 106 (or
Index Generator 130) updates the indexes (e.g., by updating
the values for properties for the entities when the entities are
modified). When a user requests that the application execute
a search query, the search query is passed to Server 106,
which generates search results using indexes corresponding
to the search query.

In some circumstances, multiple index portions will be
used to respond to a single search query (e.g., when a search
query suchas A=1 AND B=1,A=1 NOT B=1,orA=1 ORB=1
is performed both Index A 142-A and Index B 142-B are used
to respond. When multiple indexes are used, it is important for
many of the embodiments described herein that the index
portions used to perform the search query are all sorted in a
same sort order, as will be described in greater detail below. In
cases where there is no sort order specified by the search

10

15

20

25

30

35

40

45

50

55

60

65

12

query, a default sort order can be used. For example, in FIG.
4B, all of the index portions are sorted by primary key in
ascending order. However, when a custom sort order (e.g.,
sorting by a values of one or more of the properties, such as
date or relevance) is part of the search query, the indexes must
include indexes with index portions sorted in the custom sort
order.

FIG. 4C illustrates exemplary Indexes 142 for different
properties for a plurality of entities having multiple properties
and unique identifiers (keys), where the indexes are sorted in
a custom sort order. The indexes (Index AC 142-AC, Index
BC 142-BC) illustrated in FIG. 4C are for responding to
queries that have a custom sort order (e.g., sorted alphabeti-
cally by values of property C). This custom sort order is
merely exemplary and it should be understood that a set of
indexes can be generated that is adapted for responding to
search queries that have any custom sort order on values of
any property or any combination of values of different prop-
erties (e.g., date descending and relevance descending). Thus,
each index has index entries (rows) sorted in accordance with
values of two properties and a key (columns). In some imple-
mentations, there is an index entry for each combination of
values of a properties of an entity. Thus, if there is a multi-
valued property, there will be at least two index entries for the
entity (e.g., two index entries in the same index with the same
identifier but different filter values), one sorted in accordance
with the first value of the property and another sorted in
accordance with the second value of the property.

Each of the exemplary indexes in FIG. 4C is adapted for
responding to queries including a filter for the respective
property included in the index (e.g., A or B for Index AC
142-AC or Index BC 142-BC, respectively). Index 142-AC
includes portions that are indicated by the values of A and are
sorted in a sort order in accordance with values of property C.
Index 142-BC includes portions that are indicated by the
values of B and are sorted in a sort order in accordance with
values of property C. Index 142-CA includes portions that are
indicated by the values of C and are sorted in a sort order in
accordance with values of property A. For example, similar to
Index A 142-A in FIG. 4B, Index AC 142-AC has two por-
tions, a portion where A=0 and a portion where A=1, and
these portions are internally contiguous portions because
Index A 142-AC is sorted in accordance with the values of
property AC. However, unlike Index A 142-A, where the
index portions were sorted only by key, in Index AC 142-C the
index portions are sorted by values of property C and key. In
an analogous manner, similar to Index B 142-B in FIG. 4B,
Index BC 142-BC also has two portions, a portion where B=0
and a portion where B=1, and these portions are internally
contiguous portions because Index BC 142-BC is sorted in
accordance with the values of property BC. However, unlike
Index B 142-B, where the index portions were sorted only by
key, in Index BC 142-C the index portions are sorted by
values of property C and key. In an analogous manner, similar
to Index C 142-C inFI1G. 4B, Index CA 142-CA also has three
portions, a portion where C=bar, a portion where C=fool, and
a portion where C=foo7, and these portions are internally
contiguous portions because Index CA 142-CA is sorted in
accordance with the values of property C. However, unlike
Index C 142-C, where the index portions were sorted only by
key, in Index BC 142-C the index portions are sorted by
values of property A and key. Thus, the sort order of several of
the index portions in FIG. 4C is different from the sort order
of the index portions in FIG. 4B.

As described in greater detail above, in some circum-
stances, multiple index portions will be used to respond to a
single search query (e.g., when a search query such as A=1

US 9,195,698 B2

13

AND B=1 (sort by C), A=1 NOT B=1 (sort by C), or A=1 OR
B=1 (sort by C) is performed both Index AC 142-AC and
Index BC 142-BC are used to respond to the search query.
While this simple example has been provided with respect to
indexes having a single filter criteria and a single sort order, it
should be understood that, in principle, a set of indexes can be
created that is adapted for responding to a search query with
any combination of filter criteria and sort orders. More gen-
erally, for a search query having one or more filters and zero
or more sort orders, an index adapted for responding to the
search query will include a column for each property used in
a filter or sort order. The rows are sorted by the following
aspects, in order: property values used in equality filters prop-
erty values used in inequality filters property values used in
sort orders. Additionally, it should be understood that a given
index could be adapted for responding to multiple different
queries. For example the index adapted for responding to a
search query of the form: A=value, B=value, C=value, sort by
D and E would also be adapted for responding to a search
query of the form: A=value, B=value, sort by C, D and E or
responding to a search query of the form: A=value, B=value,
C=value, D=value, minvalue<E<maxvalue.

While, in many circumstances, this index generation
scheme will entail the creation of a large number of indexes so
that there is an index adapted for performing each of the likely
search queries that can be requested by a client, there are
certain advantages to maintaining this set of indexes. For
instance, the sorting of the indexes puts all index entries
matching every possible search query that uses an index in
consecutive rows in the index. Consequently, once a first
index entry is found that matches all of the filters of a search
query, all of the index entries in the index that match the
search query will be ordered consecutively in the index in the
sort order of the index. Thus, Server 106 can quickly identify
subsequent matching index entries without searching through
the whole index (e.g., by sequentially stepping through index
entries row by row). Moreover, if the next index entry in the
index does not match all of the filters, then Server 106 has
confirmation that the index does not contain any other match-
ing index entries. As a result of using the index generation
scheme describe herein will usually result in a dramatic
increase in efficiency and speed when performing a search
query atthe cost of some additional processing to generate the
indexes prior to receiving the search query.

However, given the large number of indexes that are likely
created to account for all of the possible queries that may be
submitted to Server 106, it is advantageous in some imple-
mentations to specify a subset of properties (unindexed prop-
erties) that will not be searched on. This will decrease the
amount of computing resources that are used to generate,
update and store the indexes, because Server 106 will not
need to maintain index entries for the unindexed properties in
the indexes.

In the following descriptions, reference will occasionally
be made to an identifier that is “sequentially adjacent” to an
identifier in an index portion or set of index portions. As used
herein, a second identifier in an index portion or set of index
portions is “sequentially adjacent™ to a first identifier (e.g., a
previously retrieved identifier), even when the first identifier
is not present in the index portion or set of index portions,
when the second identifier is the next higher identifier, for
ascending order, or the next lower identifier, for descending
order, in the index portion or set of index portions that
matches the filter(s) of the second operand (e.g., in the
sequence 1, 4, 6, 9, 13, the value “9” is sequentially adjacent
to “7” in the ascending direction and the value “6” is sequen-
tially adjacent to “7” in the descending direction). For

10

15

20

25

30

35

40

45

50

55

60

65

14

example, in the index portion of index 142-A where A=0 in
FIG. 4B, the key “2” is sequentially adjacent to “3” in the
descending direction and the key “5” is sequentially adjacent
to “3” in the ascending direction. Similarly, the in the index
portion of index 142-B in FIG. 4B where B=0, the key “2” is
sequentially adjacent to “3” in the descending direction and
the key “4” is sequentially adjacent to “3” in the ascending
direction.

Searching Indexes

FIG. 5 includes a flowchart representing a method 500 for
receiving and processing queries at a search server system,
according to certain embodiments. Method 500 is, optionally,
governed by instructions that are stored in a non-transitory
computer readable storage medium and that are executed by
one or more processors of one or more servers (e.g., Server
106, FIG. 3). Each of the operations shown in FIG. 5 may
correspond to instructions stored in a computer memory or
computer readable storage medium (e.g., memory 306 of
Server 106 in FIG. 3). The computer readable storage
medium may include a magnetic or optical disk storage
device, solid state storage devices such as Flash memory, or
other non-volatile memory device or devices. The computer
readable instructions stored on the computer readable storage
medium may include one or more of: source code, assembly
language code, object code, or other instruction format that is
interpreted by one or more processors. Some operations in
method 500 may be combined and/or the order of some opera-
tions may be changed.

Search Client System 102 sends (502) a search query to
Search Server System 106. The search query includes filter
criteria (504) which optionally specify a plurality (506) of
operands including a first operand associated with one or
more filters, a second operand associated with one or more
filters and a logical relationship (508) between the plurality of
operands.

The filters optionally include one or more of equality filters
(e.g., property=value), inequality filters (e.g., property >, <or
= value) and range filters (e.g., a concatenation of multiple
inequality filters). In some implementations, each search
query includes at most a single inequality or range filter.
However, if a search query including multiple inequality/
range filters is received by Server 106, Query Planner 124
optionally converts the search query into two or more search
queries that each include no more than a single inequality or
range filter, and the queries are processed separately (e.g., in
parallel or serially). Due to the sorting of the index portions
described above, a contiguous index portion that matches all
of'the filter criteria can only be guaranteed when one or more
equality filters are paired with a single inequality or range
filter, and the index is sorted by the values of the properties for
the equality filters before the values of the property for the
inequality/range filter.

To perform a search for a search query including inequality
or range filter, the portion(s) of the index(es) for the search
query are identified as follows. To identify particular index
portion, first a candidate region of an index that matches all of
the equality filters and is sorted in accordance with values of
the property for the inequality/range filter is identified. In
other words, the inequality/range filter property is a first prop-
erty in the sort criteria for the candidate region of the index.
Subsequently, within the candidate region of the index, an
index portion that includes values of the property for the
inequality/range filter is identified. As the candidate region of
the index has been sorted in ascending or descending order in
accordance with values of the property for the inequality/

US 9,195,698 B2

15

range filter, the index entries for a continuous range of values
are guaranteed to be consecutive in the index. A range filter is
typically a concatenation of multiple inequality filters. For
example, a range filter minvalue <A<maxvalue can be rewrit-
ten as minvalue <A and maxvalue >A.

In some implementations the logical relationship between
the plurality of operands is one of a Boolean “OR,” a Boolean
“AND” and a Boolean “NOT.” However, it should be under-
stood that other logical relationships could be used without
departing from the scope of the present disclosure. In some
implementations an arbitrary expression tree using combina-
tions of AND, OR and NOT can be generated by using the
results of a logical-relationship scanner as an operand for
another logical-relationship scanner. For example where
there is an AND_Scanner represented as AND(operand 1,
operand2,...),a NOT_Scanner represented as NOT(operand
1, operand 2) and an OR_Scanner represented as OR(operand
1, operand 2, . . .), the search query A AND NOT(B AND C
AND (D OR E)) where A-E are index scans for index entries
matching one or more filters would be represented as: NOT
(A, AND(B, C, OR(D, E))).

As used herein, an operand is a scanner on which a math-
ematical or logical operation is performed. A scanner is a
routine that sequentially returns identifiers for index entries
matching predefined criteria, which optionally includes filter
scanners or logical-relationship scanners. A filter scanner for
a respective filter sequentially retrieves, in the sort order,
identifiers for index entries that match the respective filter
from an index portion associated with the respective filter. In
other words, a filter scanner retrieves sequential identifiers
from a single index portion that matches all of the filter
criteria. A logical-relationship scanner sequentially retrieves
identifiers for index entries that match a logical relationship
between index entries sequentially retrieved by a combina-
tion of two or more scanners each selected from the group
consisting of a filter scanner and another logical-relationship
scanner. In other words, a logical-relationship scanner is
another scanner that retrieves results from multiple indexes
and optionally includes one or more operands that are addi-
tional logical-relationship scanners. It should be understood
that this schema can be used to generate queries of arbitrary
complexity by using different types of scanners as operands.

A more detailed description of an implementation of an
equality filter is described below. In this implementation,
index entries are divided between a prefix and a postfix
wherein the prefix for an index entry is based on all of the
equality filters and the postfix is based on values of properties
of the index entry that are used for sorting, inequality filters
and/or range filters. For a filter scanner with an equality filter
of A=0 Server 106 specifies a prefix on an index. For example
A=0isimposed by setting a prefix of 0 on an index that has A
as its first indexed column. Thus only the portion of the index
with index entries that have A=0 is considered. Additionally,
from each index entry that matches the given prefix, a postfix
can be extracted. In some cases this postfix is simply the key
(unique identifier) associated with an entity that satisfies the
given constraint, however the postfix can also contain one or
more additional components (e.g., components representa-
tive of'values of properties used for sorting and/or inequality/
range filters). Since the indexes are sorted by the values of the
properties, the postfixes resulting from a linear index scan on
the portion of the index prefixed by the given constraint are
also sorted (as they are all prefixed by the same values). Thus
the first postfix that is greater than a given minimum value (or
less than a given maximum value) of a particular scan is the
next result that should be returned by the filter scanner. In
some implementations, each constraint on an index entry’s

10

15

20

25

30

35

40

45

50

55

60

65

16

columns is represented by a filter scanner. Additionally, the
results from multiple filter scanners can typically be aggre-
gated to impose more complicated constraints (e.g., A=1
AND B=0 AND C=bar).

As described in greater detail below, in some implementa-
tions, a filter scanner is executed using the following steps.
Server 106 identifies an index adapted for responding to the
search query, the index corresponding to the search query’s
kind, filter properties, filter operators, and sort orders. After
identifying an index adapted for responding to the search
query Server 106 starts scanning the index at the first index
entry that meets all of the filter conditions using the search
query’s filter values (e.g., the beginning of the index portion
matching the search query). After identifying the matching
index portion, Sever 106 steps through the index entries of the
matching index portion, sequentially returning each index
entry, until it finds the next index entry that does not meet the
filter conditions, reaches the end of the index, or has collected
identifiers from enough index entries to satisfy the maximum
number of results requested by the search query. In some
implementations, after stopping the search query, Server 106
notes the stopping point and generates a query cursor to
enable Server 106 to resume the search query from the stop-
ping point, as described in greater detail below with reference
to FIGS. 9A-9B.

The search query optionally also includes sort criteria
(510) (e.g., the sort criteria specified by Client 102). In some
implementations, the sort criteria specify that the results for
the search query be sorted in an order in accordance with
values of a property that is of interest to a user. In the absence
of'user-specified sort criteria, the indexes are typically sorted
by at least a key (unique identifier) so as to ensure a common
default sort order between different index portions. However,
the sort criteria described herein are sort criteria specified in
the search query. These sort criteria include a set of one or
more predefined sort parameters and corresponding sort
directions for sorting index entries in a predefined sort order.
It should be understood that search results can be sorted in
accordance with any combination of one or more predefined
properties and directions (e.g., a sort order could specify Age:
Descending, LastName: Ascending, and FirstName: Ascend-
ing or any combination or subset thereof). A sort direction for
a particular predefined sort parameter could be any one of
ascending, descending, or scatter. A scatter order is a pseudo-
random ordering; work can be distributed across multiple
portions of a large database table (e.g., a database table stored
and/or managed by multiple servers) by accessing entities in
(or writing new entities into) the database table using an index
or index portion having a scatter sort order. The predefined
sort parameter included in the sort criteria from the search
query can be any one of a date, an alphanumeric string (e.g.,
name, location, etc.), or a measure of relevance. Values for the
predefined sort parameter are typically in any one of the
following formats: Integer, Floating point number, String,
Point, Key. The following are examples of parameter, value
type pairs indicating for a respective parameter, the type of
value that would be expected: FirstName: String, [astName:
String, Height: Floating point number, Age: Integer, Date:
Integer, Location: Point, ClassID: Integer.

In some circumstances, the sort criteria will specify a
single predefined sort parameter and a single corresponding
sort direction. In these situations, the plurality of index por-
tions will be sorted in the sort direction in accordance with
values of the single predefined sort parameter, and identifiers
will be retrieved from the plurality of index portions in an
order determined by the values of the single predefined sort
parameter in the plurality of index portions. In some other

US 9,195,698 B2

17

situations, the sort criteria specitfy multiple predefined sort
parameters and multiple corresponding sort directions, and
the plurality of index portions are sorted in the predefined sort
order in accordance with values of the multiple predefined
sort parameters and the corresponding sort directions.

In some circumstances the search query will also include
(512) a query cursor, the query cursor is, optionally, used to
identify a starting location for executing the search query, as
described in greater detail with respect to FIGS. 9A-9B,
below. In some circumstances the search query also specifies
(514) a predefined maximum number of results to return,
which may correspond to a maximum number of results that
can be simultaneously displayed at Client 102 or an arbitrary
number of results selected by the user or Client 102 so as to
reduce the search time.

Server 106 receives (516) a search query including filter
criteria and sort criteria. In response to the search query
Server 106 identifies (518) a plurality of index portions for the
filter(s) of the first operand and the filter(s) of the second
operand. The index portions are identified such that index
entries in the plurality of index portions are sorted in the
predefined sort order (which, as described above can be based
on any number of different sort directions for any number of
different properties). In some implementations, each respec-
tive index entry in the plurality of index portions includes an
identifier representative of a value for the predefined sort
parameter and a unique identifier (e.g., key) for a respective
entity associated with the respective index entry.

In some implementations, when the search query includes
a query cursor, prior to identifying the matching entities,
Server 106 translates (520) the query cursor and determines
(526) a starting location in the identified index portions based
on the query cursor, as described in greater detail with respect
to FIGS. 9A-9B, below.

It should be understood that even though, in some circum-
stances, the overall sort order of each of the indexes used to
perform a particular search query is different for different
respective indexes, the index portions that are used to perform
the particular search query are all sorted in the same sort
order. For example, a first index is sorted by a set of properties
(e.g., A and C) that is different from a set of properties used to
sort a second index (e.g., B and C), but if the search query is
A=1 and B=0, then the portion of the index sorted by A and C
that matches A=1 is sorted by C and the portion of the index
sorted by B and C that matches B-0 is also sorted by C. In
other words, in some circumstances the plurality of index
portions include a first index portion identified in a first index
and a second index portion identified in a second index, the
first index is different from the second index, the first index
has a different overall sort order than the second index, and
the first index portion and the second index portion are sorted
in the predefined sort order.

In some implementations, each filter specifies a property
having a plurality of different possible values and a particular
value of the property that matches the filter (e.g., filter is an
equality filter where an index entry matches the filter when
property=particular value). In these implementations, identi-
fying a respective index portion for a respective operand that
has a respective filter and one or more predefined sort param-
eters includes: identifying an index that is sorted in accor-
dance with the different possible values of a respective prop-
erty of the respective filter and the one or more predefined sort
parameters (e.g., the filter is an equality filter where an index
entry matches the filter when property=particular value) and
selecting, as the respective index portion, a portion of the
identified index that includes all of the index entries having
the particular value for the respective property that matches

15

20

25

35

40

45

18

the filter. Usually, the index will be sorted so that the identi-
fied portion of the index is a contiguous portion of the index.
Additionally, it should be understood that a portion of an
index could include the whole index (e.g., where every index
entry in the index happens to match the one or more filters of
the operand). For example if the index includes a column for
values of A, which has possible values of 1 or 0 and all of the
indexed entities happen to have the value of A=1, then a filter
of A=1 will return the entire index as the “index portion.”
However an index will usually have multiple portions
because the index will include index entries with different
values for the properties by which the index is sorted (e.g.,
there will be at least one index entry with A=1 and another
index entry with A=0).

As described above, there are typically many different
properties by which indexes can be sorted, and many different
combinations of properties. Thus, the predefined sort order
specified by the search query is generally only one of a plu-
rality of different sort orders. Similarly, the plurality of index
portions can, in some situations (e.g., where the search query
specifies filters on two different properties, such as “name”
and “tag”) be selected from a plurality of indexes (e.g., an
index including a column for values of “name” and an index
including a column for values of “tag”). In some implemen-
tations, the plurality of indexes include at least one distinct
index for each of the plurality of sort orders (e.g., an index
including a column for values of “name” sorted by date and a
distinct index including a column for values of “name” sorted
by size and yet another distinct index including a column for
values of “name” sorted by relevance). More particularly, in
some embodiments, there is a distinct index for each sort
order of the plurality of different sort orders (e.g., the plurality
of'index portions are selected based on the sort order specified
by the sort criteria). Typically, each index used in generating
results for a search query must include all the sort orders (e.g.,
indexes that don’t contain the exact sort order not consid-
ered). Thus, when a search query is received with a particular
sort order specified by the sort criteria, only indexes that
include index portions sorted in the sort order are considered.
For example, when a search query is: Name="“Bob” And
Tag="Vacation,” sorted by date, Server 106 would use two
date-sorted indexes to respond to the search query, including
an index including a column for values of “name” sorted by
date and an index including a column of values of “tag” sorted
by date. In contrast, if the a search query were: Name="Bob”
And Tag="Vacation,” sorted by size, Server 106 would use
two size-sorted indexes to respond to the search query includ-
ing an index including a column for values of “name” sorted
by size and an index including a column of values of “tag”
sorted by size.

Moreover, the plurality of indexes optionally include mul-
tiple different indexes that are sorted in accordance with the
same properties but have different sort orders determined in
accordance with a sequence in which the sorting occurs and a
direction of the sorting. For example, there may be one index
sorted by, in order: “date” descending and “relevance”
descending and another index sorted by, in order “date”
ascending and “relevance” descending. Thus, the one or more
index portions optionally include an ascending index portion
for the set of one or more predefined sort parameters in which
index entries are sorted in accordance with ascending values
of'a particular predefined sort parameter (e.g., date) in the set
of'predefined sort parameters, and a descending index portion
for the set of one or more predefined sort parameters in which
index entries are sorted in accordance with descending values
(e.g., date) of the particular predefined sort parameter in the
set of one or more predefined sort parameters. Moreover,

US 9,195,698 B2

19

there are optionally other indexes sorted by, in order, “rel-
evance” descending and “date” ascending.

After identifying the one or more index portions, Server
106 identifies (530) one or more matching entities that match
the search query. The one or more matching entities are iden-
tified by identifying matching index entries in the plurality of
index portions in accordance with the logical relationship
between the plurality of operands by comparing identifiers
for index entries matching the filter(s) of the first operand
with identifiers for index entries matching the filter(s) of the
second operand. In some implementations, the identifiers are
postfixes, including the value(s) for the sort parameter(s) and
a key (unique identifier) for an entity associated with the
index entry. In some implementations, when the logical rela-
tionship includes a Boolean AND, Server 106 uses an AND-
_Scanner to identify (532) matching entities, as described in
greater detail below with reference to FIGS. 6 A-6B, below. In
some implementations, when the logical relationship
includes a Boolean NOT, Server 106 uses a NOT_Scanner to
identify (534) matching entities, as described in greater detail
below with reference to FIG. 7, below. In some implementa-
tions, when the logical relationship includes a Boolean OR,
Server 106 uses an OR_Scanner to identify (536) matching
entities, as described in greater detail below with reference to
FIG. 8.

Server 106 sequentially retrieves the identifiers for the
matching index entries corresponding to matching entities
from the plurality of index portions in the predefined sort
order. As described above, the index portions are selected
such that they are sorted in the predefined sort order, conse-
quently, when matching index entries are identified in the
index portions by scanning sequentially through the index
portions (e.g., using a filter scanner), the matching index
entries are identified in the sort order. Thus the identifiers for
matching entities can be identified in the index portions one at
a time and will still be retrieved in the predefined sort order.
One result of this approach is that full result sets matching the
filter criteria do not need to be pulled into memory. This is
particularly advantageous for searches performed over a large
set of data where a result set for a simple filter scanner such as
Tag=Vacation which would otherwise return thousands or
hundreds of thousands of results. This also provides dramatic
advantages over conventional search systems in situations
where a search query specifies that no more than a predefined
number of identifiers are to be retrieved, because in the search
system described herein, Server 106 can retrieve no more than
the predefined number of identifiers. For example, if the sort
order is sort by date, the first ten search results retrieved by
Server 106 will be the ten most recent entities matching the
filter. It should be understood that results could be retrieved in
batches (e.g., by retrieving the top 20 matching results) or the
results could be retrieved individually as needed by a user
(e.g., individual results could be retrieved one at a time as
needed by repeating the search query to retrieve a next result
each time a next result is needed).

In some implementations, when the last matching index
entry has been identified, a new query cursor is generated
(540) which marks the stopping point of the search query in
the identified index portions. This query cursor enables
Server 106 to resume executing the search query at the stop-
ping point at a later point in time (e.g., in response to a request
from Client 102) as described in greater detail with respect to
FIGS. 9A-9B, below. Generating a new query cursor enables
Server 106 to quickly pick up retrieving search results where
it stopped previously, without wasting computing resources
regenerating previously generated search results attempting
to approximate a stopping point of a previous search query.

20

25

30

40

45

55

20

After identifying the one or more matching entities, Server
106 generates (542) search results including representations
of matching entities and, optionally, display information for
displaying the representations of matching entities as search
results at Client 102. After generating the search results,
Server 106 transmits (544) the search results (including rep-
resentations of one or more of the matching entities and,
optionally, the new query cursor) to Client 102. Client 102
receives (546) the search results that include the representa-
tions of matching entities, and displays the search results (or
a subset of the search results) to the user.

Itshould be understood that this process can be repeated for
each search query that is received from Client 102. Addition-
ally, the same search query can be submitted multiple times
with different query cursors so as to produce additional
results. For example, a first execution of a search query with
no query cursor might return the top ten most relevant results,
while a second execution of the search query with a query
cursor received with the previous search results would return
the next ten most relevant/recent search results. Thus, using
the query cursor in this way, a user can effectively “page
forward” through sets of search results of decreasing rel-
evance/recency for the search query, where a new search
query is performed each time a the user “advances” to a next
set of search results matching the search query. An analogous
process enables the user to “page backward” through the
search results. However, in some implementations (e.g.,
where the query cursor is sort order dependent) returning to
previous sets of search results requires translation of the
query cursor, as described in greater detail below with refer-
ence to FIGS. 9A-9B.

It should be understood that the particular order in which
the operations in FIG. 5 have been described are merely
exemplary and are not intended to indicate that the described
order is the only order in which the operations could be
performed. One of ordinary skill in the art would recognize
various ways to reorder the operations described herein.
Additionally, it should be noted that details of other processes
described herein with respect to methods 600, 700, 800 and
900 (e.g., FIG. 6A-6B, 7, 8 or 9A-9B respectively) are also
applicable in an analogous manner to method 500 described
above with respect to FIG. 5. For example, the operands,
matching entities, indexes, search queries, query cursors, and
search results described above with reference to method 500
may have one or more of the characteristics of the various the
operands, matching entities, indexes, search queries, query
cursors, and search results described herein with reference to
methods 600, 700, 800 and 900. For brevity, these details are
not repeated here.

Identifying Matching Entities with an and Scanner

FIGS. 6A-6B includes a flowchart representing a method
600 for identifying matching entities in one or more indexes
when a logical relationship between operands of a search
query is a Boolean AND, according to certain embodiments.
Method 600 is, optionally, governed by instructions that are
stored in a non-transitory computer readable storage medium
and that are executed by one or more processors of one or
more servers (e.g., Server 106, F1G. 3). Each of the operations
shown in FIGS. 6A-6B may correspond to instructions stored
in a computer memory or computer readable storage medium
(e.g., memory 306 of Server 106 in FIG. 3). The computer
readable storage medium may include a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, or other non-volatile memory device or devices. The
computer readable instructions stored on the computer read-

US 9,195,698 B2

21

able storage medium may include one or more of: source
code, assembly language code, object code, or other instruc-
tion format that is interpreted by one or more processors.
Some operations in method 600 may be combined and/or the
order of some operations may be changed.

An AND_Scanner can be represented as an operator that
includes a plurality of operands, such as AND(operand 1,
operand 2, operand 3 . . .). At a high level, an AND_Scanner
loops through the scanners (e.g., filter scanners or logical-
relationship scanners) associated with all of the operands
until it finds a result that is returned by the scanner for each
operand. The AND_Scanner can do this very efficiently by
passing the result returned by the scanner for the immediately
previous operand to the scanner for the next operand as the
minimum value requested (e.g., as the starting point for
searching in the index portion associated with the next oper-
and). In this way, large numbers of index entries that are
implicitly not matching (e.g., index entries having identifiers
that were returned as results by prior operands) can be
skipped by a current scanner, because the skipped index
entries cannot match the AND logic if any of the operands do
not return an identifier for the skipped index entries. For
example, if the index portions are sorted by date descending
and the search query is for Name="“Bob” AND
Tag="Vacation,” if there are no entities associated with the
name “Bob” prior to Apr. 2, 2011, then there cannot be any
entities matching the search query prior to Apr. 2, 2011, and
it is therefore more efficient to begin searching for entities
with Tag="Vacation” starting at Apr. 2, 2011.

In some implementations, when the logical relationship is
a Boolean AND (e.g., the one or more matching entities are
identified by an AND_Scanner), the plurality of index por-
tions include (602) a first set of one or more index portions
matching the filter(s) of the first operand and a second set of
one or more index portions matching the filter(s) of the sec-
ond operand. It should be understood that the first set of one
or more index portions and the second set of one or more
index portions could include portions of the same index or
portions of different indexes. For example, when the search
query is for Name="“Bob” AND Tag="“Vacation,” the first
index portion would be a portion of an index including a
column for values of Name where Name="Bob” and the
second index portion would be a portion of a different index
including a column for values of Tag where Tag="Vacation.”
In contrast, when the search query is Tag="Summer” AND
Tag="Vacation,” the first index portion would be a portion of
an index including a column for Tag where Tag="Summer”
while the second index portion is a portion of the same index
including a column for Tag where Tag="Vacation.”

As described in greater detail above with reference to FIG.
5, Server 106 identifies matching index entries in the plurality
of'index portions in accordance with the logical relationship
between the plurality of operands. When using the
AND_Scanner, identifying these matching index entries
includes receiving, (604) from the first set of index portion(s),
information indicative of a first set of one or more index
entries having a first identifier and matching the filter(s) of the
first operand. In other words, when the first operand is for a
filter scanner, Server 106 identifies the first index entry in the
index portion corresponding to the filter scanner that matches
the filter criteria and returns an identifier for that index entry
as a candidate identifier. Additionally, in more complicated
situations (e.g., where the operand is a logical-relationship
scanner), Server 106 simply retrieves the next matching result
that is returned by the logical-relationship scanner. In some
implementations identifiers for multiple sets of matching
index entries are simultaneously retrieved to improve the

10

15

20

25

30

35

40

45

50

55

60

65

22

efficiency and/or speed of retrieving results for the search
query (e.g., the first 50 or 100 matching index entries from a
filter scanner).

While it should be understood that the AND_Scanner can
operate on any number (606) of operands, a simple imple-
mentation when only two (608) operands are used is
described first for clarity. Various implementations of the
AND_Scanner enabling searches using an arbitrary number
of operands are described below in greater detail with refer-
ence to operations (630)-(652).

When the first operand and second operand are the only
operands, Server 106 determines whether the second set of
index portion(s) includes a set of one or more index entries
having the first identifier and matching the filter(s) of the
second operand. When the second set of index portion(s) does
not (610) include a set of one or more index entries having the
first identifier and matching the filter(s) of the second oper-
and, Server 106 continues to process the search query without
marking an entity associated with the first identifier as match-
ing the search query (e.g., because the first set of index por-
tions and the second set of index portions do not both include
an index entry with the first identifier). In some implementa-
tions, in addition to continuing to process the search query
without marking an entity associated with the first identifier
as matching the search query, an entity is “marked as not
matching” the search query by skipping over or discarding the
identifier for index entries associated with the entity. For
example, Server 106 could skip over identifiers for index
entries associated with an entity by advancing the search to
index entries with an identifier that is has a sequentially next
value (greater than or less than depending on the sort direc-
tion) from the value of the respective identifier for the respec-
tive entity that is marked as not matching the search query.

In contrast, when the first operand and the second operand
are the only operands, and the second set of index portion(s)
includes (614) a set of one or more index entries having the
first identifier and matching the filter(s) of the second oper-
and, Server 106 marks an entity associated with the first
identifier as matching the search query (e.g., because both the
first set of index portions and the second set of index portions
include an index entry with the first identifier). As used
herein, “marking an entity” means recording information that
indicates a specific condition with respect to the entity, either
in the data structure containing the entity or in another data
structure, such as an index or temporary results table.

In situations where the first operand and the second oper-
and are the only operands, Server 106 receives (618), from the
second set of index portion(s), a second identifier for a second
set of one or more index entries having the second identifier
and matching the filter(s) of the second operand, where the
second identifier is sequentially adjacent to the first identifier
in the sort order in the second set of index portion(s). As used
herein, a second identifier in an index portion or set of index
portions is “sequentially adjacent” to a first identifier, even
when the first identifier is not present in the index portion or
set of index portions, when the second identifier is the next
higher identifier, for ascending order, or the next lower iden-
tifier, for descending order, in the index portion or set of index
portions that matches the filter(s) of the second operand (e.g.,
in the sequence 1, 4, 6, 9, 13, the value “9” is sequentially
adjacent to “7” in the ascending direction and the value “6” is
sequentially adjacent to “7” in the descending direction).

After receiving the second identifier, Server 106 requests
(620), from the first set of index portion(s), information
indicative of a set of one or more index entries from the first
set of index portion(s) having the second identifier and match-
ing the filter(s) of the first operand. Thus, in this situation,

US 9,195,698 B2

23

Server 106 repeats (622) operations 604-620 with roles of
first operand and second operand reversed using the second
identifier in place of the first identifier 622. In other words, in
these implementations, Server 106 is able to reverse the roles
of'the first operand and the second operand, and take the most
recently retrieved identifier (the second identifier) from the
second set of index portions and use that value as a starting
point for searching the first set of index portions for an index
entry having the second identifier or an identifier that is
sequentially adjacent to the second identifier in the first set of
index portions. This approach dramatically improves the effi-
ciency of performing the search query in most cases, because
it means that all of the index entries in the first set of index
portions with identifiers between the first identifier and the
second identifier, which have been implicitly identified as not
matching the search query can easily be ignored (e.g., by
searching the first set of index portions starting at the second
identifier).

After repeating the previously described operations with
the roles of the first and second operands reversed, Server 106
identifies (624) a next set of one or more index entries in the
first set of index portion(s) having a next identifier and match-
ing the filter(s) of the first operand and repeat operations
604-622 for the next identifier. Thus, the Server 106 has a new
identifier from the first set of index portions and can proceed
as described above. It should be understood that this process
can be repeated until there are no more sets of index entries
that match the filter(s) of the first operand in the first set of one
or more index portions or until there are no more sets of index
entries that match the filter(s) of the second operand in the
second set of one or more index portions, in which case there
can be no more index entries with identifiers that match
search query that requires (e.g., due to the Boolean AND) that
both the filters of the first operand and the filters of the second
operand be met.

As mentioned above, in some implementations the
AND_Scanner takes an arbitrary number of operands,
enabling Clients 102 to submit search queries that include
more than two operands. Alternatively, the AND_Scanner
takes only two operands but an arbitrary number of operands
can be nested to generate the equivalent of a single
AND_Scanner with a plurality of operands. For example, the
search query A=1 AND B=0 AND C=bar could be repre-
sented as either AND(A=1, B=0, C=bar) or AND(A=1, AND
(B=0, C=bar)). In situations where the AND_Scanner takes
an arbitrary number of operands and the search query
includes two or more operands, the plurality of operands
includes (630) a plurality of subsequent (second, third, etc.)
operands each associated with one or more filters and a sub-
sequent set of one or more index portions.

Server 106 requests (632), from a subsequent (second,
third, etc.) set of index portion(s), information indicative of a
set of one or more index entries having a current last matching
(first, second, etc.) identifier and matching the filter(s) of the
subsequent (second, third, etc.) operand. Subsequently,
Server 106 determines whether the subsequent (second, third,
etc.) set of index portion(s) includes a set of one or more index
entries having the current last matching (first, second, etc.)
identifier and matching the filter(s) of the subsequent (second,
third, etc.) operand. In other words, as described above,
Server 106 uses the result from the immediately previous
scanner as a starting point for identifying whether the next
scanner has an index entry with the same identifier.

When the subsequent (second, third, etc.) set of index
portion(s) does not include (634) a set of one or more index
entries having the current last matching (first, second, etc.)
identifier and matching the filter(s) of the subsequent (second,

10

15

20

25

30

35

40

45

50

55

60

65

24

third, etc.) operand, Server 106 continues to perform the
search operation without marking an entity associated with
the last matching identifier as matching the search query.
Optionally, Server also 106 marks (636) an entity associated
with last matching identifier as not matching the search query.
Additionally, when the subsequent set of index portion(s)
does not include the current last matching identifier, Server
106 receives (638) a next last matching (second) identifier
that is sequentially adjacent to the current last matching (first)
identifier in the sort order in the subsequent set of index
portion(s). In other words, as described in greater detail
above, marking an entity as not matching a search query
optionally includes simply skipping over an entity having the
identifier or advancing in the current index portion(s) to a
sequentially adjacent index entry with a next identifier.

Afterreceiving the next last matching identifier, Server 106
identifies (640) a next “subsequent operand.” When there are
only two operands and the subsequent operand is the second
operand the next “subsequent operand” is the first operand. In
contrast, when there are more than two operands and the
subsequent operand is the second operand, the next subse-
quent operand is a third operand. It should be understood that
the operands each get a turn to serve as the next subsequent
operand through this process, which scales to match the num-
ber of operands in the search query that are related by the
same logical-relationship.

When the subsequent (second, third, etc.) set of index
portion(s) includes (642) a set of one or more index entries
having the current last matching (first, second, etc.) identifier
and matching the filter(s) of the subsequent (second, third,
etc.) operand, Server 106 retains (644) the current last match-
ing (first) identifier. In other words, if the same identifier that
corresponded to an index entry matching the filters of the last
set of index components also corresponds to an index entry
matching the filters of the current set of index components,
then the index entry may correspond to an entity that matches
all of the operands ofthe search query, because Server 106 has
not yet found an operand that does not return the identifier as
matching filters of the operand.

Subsequently, Server 106 determines whether all operands
returned the current last matching identifier. When all oper-
ands have not (646) returned the current last matching iden-
tifier (e.g., there is at least one operand that has not provided
information indicating whether or not there is an index entry
matching the filters of the operand having the last matching
identifier), Server 106 identifies (640) a next “subsequent
operand” and repeats the process described above for the next
“subsequent” operand. In this situation, the next “subse-
quent” operand is one of the operands that has not provided
information indicating whether or not there is an index entry
matching the filters of the operand that has the last matching
identifier. The process above proceeds in round robin fashion
for each operand until a same last matching identifier is
returned by all of the operands. When all of the operands have
(648) returned the current last matching identifier, Server 106
marks (650) an entity associated with current last matching
identifier as matching the search query.

In some embodiments, after an entity associated with a
current last matching identifier is received, if there is no limit
on the number of matches to be retrieved or the number of
matches to be retrieved has not yet been met, the process
continues by identifying a next last matching identifier. In
principle this new next last matching identifier can be
retrieved from any index (e.g., because the process of deter-
mining if each operand will return the same identifier is
beginning over again). However typically, the new next
matching identifier is retrieved from the current subsequent

US 9,195,698 B2

25

set of index portions. Thus Server 106 receives (652) a next
last matching identifier that is sequentially adjacent to the
current last matching identifier in the sort order in the subse-
quent set of index portion(s) and identifies (640) a next “sub-
sequent operand.” It should be understood that this process
can be repeated for each operand for the operator (e.g., the
AND_Scanner) until a last “subsequent operand” is reached,
in which case the first “subsequent operand” is the next “sub-
sequent operand.”

A specific example of the set of operations that are per-
formed when the search query includes three operands related
by the AND operator is described below. When the second set
of'index portion(s) does not include a set of one or more index
entries having the first identifier and matching the filter(s) of
the second operand, Server 106 receives, from the second set
of'index portions, a second identifier for a second set of one or
more index entries having the second identifier and matching
the filter(s) of the second operand. The second identifier is
sequentially adjacent to the first identifier in the sort order in
the second set of index portion(s). In other words, the second
identifier has a predefined sequential relationship to the first
identifier in accordance with the sort order in the second set of
one or more index portions (e.g., the second identifier is
sequentially adjacent to “virtual position” of the first identi-
fier in the sort order in the second set of one or more index
portion).

Thus, the plurality of operands includes a third operand
associated with one or more filters in addition to the first
operand and the second operand, and the plurality of index
portions include a third set of one or more index portions.
Server 106 determines whether the second set of index por-
tion(s) includes a set of one or more index entries having the
first identifier and matching the filter(s) of the second oper-
and. When the second set of index portion(s) includes a set of
one or more index entries having the first identifier and
matching the filter(s) of the second operand, Server 106
requests, from the third set of index portion(s), information
indicative of a set of one or more index entries having the first
identifier and matching the filter(s) of the third operand. In
contrast, when the second set of index portion(s) does not
include a set of one or more index entries having the first
identifier and matching the filter(s) of the second operand,
Server 106 receives a second identifier for a second set of one
or more index entries having the second identifier and match-
ing the filter(s) of the second operand, where the second
identifier is sequentially adjacent to the first identifier in the
sort order in the second set of index portion(s). After receiving
the second identifier, Server 106 requests, from the third set of
index portion(s), information indicative of a set of one or
more index entries having the second identifier and matching
the filter(s) of the third operand.

Additionally, while the preceding examples have been
described with reference to a situation where the AND_Scan-
ner produced final results for transmission to Client 102, it
should be understood that similar operations could be per-
formed when the AND_Scanner produces intermediate
results as an operand of a different scanner (e.g., an
NOT_Scanner, an OR_Scanner or another AND_Scanner),
with the difference that the intermediate results would be used
as inputs for the different scanner rather being returned as
search results to Client 102.

It should be understood that the particular order in which
the operations in FIGS. 6A-6B have been described are
merely exemplary and are not intended to indicate that the
described order is the only order in which the operations
could be performed. One of ordinary skill in the art would
recognize various ways to reorder the operations described

10

15

20

25

30

35

40

45

50

55

60

65

26
herein. Additionally, it should be noted that details of other
processes described herein with respect to methods 500, 700,
800 and 900 (e.g., FIG. 5,7, 8 or 9A-9B respectively) are also
applicable in an analogous manner to method 600 described
above with respect to FIGS. 6 A-6B. For example, the oper-
ands, matching entities and indexes described above with
reference to method 600 may have one or more of the char-
acteristics of the various operands, matching entities and
indexes described herein with reference to methods 500, 700,
800 and 900. For brevity, these details are not repeated here.

Identifying Matching Entities with a not Scanner

FIG. 7 includes a flowchart representing a method 700 for
identifying matching entities in one or more indexes when a
logical relationship between operands of a search query is a
Boolean NOT, according to certain embodiments. Method
700 is, optionally, governed by instructions that are stored in
a non-transitory computer readable storage medium and that
are executed by one or more processors of one or more servers
(e.g., Server 106, FIG. 3). Each of the operations shown in
FIG. 7 may correspond to instructions stored in a computer
memory or computer readable storage medium (e.g., memory
306 of Server 106 in FIG. 3). The computer readable storage
medium may include a magnetic or optical disk storage
device, solid state storage devices such as Flash memory, or
other non-volatile memory device or devices. The computer
readable instructions stored on the computer readable storage
medium may include one or more of: source code, assembly
language code, object code, or other instruction format that is
interpreted by one or more processors. Some operations in
method 700 may be combined and/or the order of some opera-
tions may be changed.

A NOT_Scanner can be represented as an operator that
includes two operands, such as NOT(operand 1, operand 2).
At a high level, NOT_Scanner implements a logical NOT
operator by sequentially retrieving identifiers from a source
scanner (e.g., the scanner for operand 1) and then requesting
the same identifier from an inverted scanner (e.g., the scanner
for operand 2). If the inverted scanner returns the same iden-
tifier, the identifier is discarded and the search process
advances to a next identifier. Results are sequentially
retrieved from the source scanner until a next identifier is
found that does not match any identifier from the inverted
scanner. This identifier is then returned by the NOT_Scanner
as a matching result. The NOT_Scanner can efficiently per-
form the search operation using the next identifier from the
source scanner as the minimum identifier in the inverted
scanner. Additionally, if the last identifier returned by the
inverted scanner is greater than an last identifier pulled from
the source scanner Server 106 can determine implicitly that
every result between the last identifier returned by the source
scanner and the last identifier returned by the inverted scanner
avalid result (as identifiers from both scanners are returned in
order), further increasing the efficiency and/or speed of per-
forming the search query.

Server 106 receives, from Client 102, a search query
including filter criteria. The filter criteria specify a plurality of
operands including a first operand associated with one or
more filters, a second operand associated with one or more
filters and a logical relationship (e.g., a Boolean NOT)
between the plurality of operands, as described in greater
detail above with respect to FIG. 5. In response to the search
query, Server 106 identifies a plurality of index portions
including a first set of one or more index portions matching
the filter(s) of the first operand and a second set of one or more
index portions matching the filter(s) of the second operand.

US 9,195,698 B2

27

The index entries in the first set of index portion(s) and the
second set of index portion(s) are sorted in a same sort order
in accordance with identifiers for the index entries, as
described in greater detail above with respect to FIGS. 4A-4C
and 5. In some implementations, the sort order is determined
in accordance with sort criteria specified in the search criteria
(e.g., a user-specified custom sort order), the sort criteria
including a set of one or more predefined sort parameters and
corresponding sort directions. In some other implementations
the sort order is determined in accordance with unique iden-
tifiers of index entries (e.g., a default sort order).

After receiving the search query, Server 106 identifies one
or more matching entities that match the search query. In
some implementations, identifiers are postfixes for the index
entries, each of the postfixes including a unique identifier for
an entity associated with the index entry and optionally a
value for one or more property used as a sort criteria for the
sort order. Typically, identifying the matching entities
includes identifying (702) a first set of one or more index
entries in the first set of index portion(s) having a first iden-
tifier and matching the filter(s) of the first operand.

In some implementations, after identifying the first set of
one or more index entries in the first set of index portion(s)
having the first identifier, Server 106 determines whether the
second set of index portion(s) includes a set of one or more
index entries having the first identifier and matching the
filter(s) of the second operand. When the second set of index
portion(s) includes (704) a set of one or more index entries
having the first identifier and matching the filter(s) of the
second operand, Server 106 continues to process the search
query without marking an entity associated with the first
identifier as matching the search query. Optionally, when the
second set of index portion(s) includes a set of one or more
index entries having the first index entries, Server 106 marks
(706) an entity associated with the first identifier as not
matching the search query. In contrast, when the second set of
index portion(s) does not include (708) a set of one or more
index entries having the first identifier and matching the
filter(s) of the second operand, Server 106 marks (710) an
entity associated with the first identifier as matching the
search query.

After determining whether the second set of index portions
includes a set of one or more index entries having the first
identifier and matching the filters of the second operand,
Server 106 identifies (712), in the second set of index
portion(s), a second set of one or more index entries having a
second identifier that is sequentially adjacent to the first iden-
tifier in the sort order and matching the filter(s) of the second
operand. In some implementations, after identifying, in the
second set of index portion(s), a second set of one or more
index entries having the second identifier, Server 106 deter-
mines whether the first set of index portion(s) includes a set of
one or more index entries having the second identifier and
matching the filter(s) of the first operand. When the first set of
index portion(s) does not include (714) a set of one or more
index entries having the second identifier and matching the
filter(s) of the first operand, Server 106 continues to process
the search query without marking an entity associated with
the second identifier as matching the search query. Similarly,
when the first set of index portion(s) includes (716) a set of
one or more index entries having the second identifier and
matching the filter(s) of the first operand, Server 106 also
continues to process the search query without marking an
entity associated with the second identifier as matching the
search query. However, when the first set of index portions
includes a set of one or more index entries having the second
identifier and matching the filters of the first operand, Server

10

15

20

25

30

35

40

45

50

55

60

65

28

106 optionally marks (718) an entity associated with the first
identifier as not matching the search query.

In some implementations, after identifying, in the second
set of index portion(s), a second set of one or more index
entries having the second identifier, Server 106 determines
whether the first set of index portion(s) includes a respective
set of one or more index entries having a respective identifier
between the first identifier and the second identifier and
matching the filter(s) of the first operand. When the first set of
index portion(s) does not (720) include a respective set of one
or more index entries having a respective identifier between
the first identifier and the second identifier and matching the
filter(s) of the first operand, Server 106 continues to process
the search query without marking a respective entity associ-
ated with the respective identifier as matching the search
query. In contrast, when the first set of index portion(s)
includes a respective set of one or more index entries having
a respective identifier between the first identifier and the
second identifier and matching the filter(s) of the first oper-
and, Server 106 marks (724) a respective entity associated
with the respective identifier as matching the search query. In
other words, because the second set of index portions do not
include any index entries matching filters of the second oper-
and with identifiers between the first identifier and the second
identifier, any sets of matching index entries that match the
filters of the first operand with identifiers between the first
identifier and the second identifier will match the search
query “first operand” NOT “second operand.”

After performing the operations above and optionally iden-
tifying one or more matching entities, in some implementa-
tions Server 106 repeats the process starting with identifying
(730) a next set of one or more index entries in the first set of
index portion(s) having a next identifier and matching the
filter(s) of the first operand and then repeating operations
702-724 for the next identifier. In some situations, after iden-
tifying the one or more matching entities, when all matching
entities have been identified or a predefined limit on the
number of matching entities to identify has been reached,
Server 106 transmits representations of one or more of the
matching entities to Client 102, as described in greater detail
above with reference to FIG. 5.

Additionally, while the preceding examples have been
described with reference to a situation where the NOT_Scan-
ner produced final results for transmission to Client 102, it
should be understood that similar operations could be per-
formed when the NOT_Scanner produces intermediate
results as an operand of a different scanner (e.g., an
AND_Scanner, an OR_Scanner or another NOT_Scanner),
with the difference that the intermediate results would be used
as inputs for the different scanner rather being returned as
search results to Client 102.

It should be understood that the particular order in which
the operations in FIG. 7 have been described are merely
exemplary and are not intended to indicate that the described
order is the only order in which the operations could be
performed. One of ordinary skill in the art would recognize
various ways to reorder the operations described herein.
Additionally, it should be noted that details of other processes
described herein with respect to methods 500, 600, 800 and
900 (e.g., FIG. 5, 6A-6B, 8 or 9A-9B respectively) are also
applicable in an analogous manner to method 700 described
above with respect to FIG. 7. For example, the operands,
matching entities and indexes described above with reference
to method 700 may have one or more of the characteristics of
the various operands, matching entities and indexes described

US 9,195,698 B2

29
herein with reference to methods 500, 600, 800 and 900. For
brevity, these details are not repeated here.

Identifying Matching Entities with an or Scanner

FIG. 8 includes a flowchart representing a method 800 for
identifying matching entities in one or more indexes when a
logical relationship between operands of a search query is a
Boolean OR, according to certain embodiments. Method 800
is, optionally, governed by instructions that are stored in a
non-transitory computer readable storage medium and that
are executed by one or more processors of one or more servers
(e.g., Server 106, FIG. 3). Each of the operations shown in
FIG. 8 may correspond to instructions stored in a computer
memory or computer readable storage medium (e.g., memory
306 of Server 106 in FIG. 3). The computer readable storage
medium may include a magnetic or optical disk storage
device, solid state storage devices such as Flash memory, or
other non-volatile memory device or devices. The computer
readable instructions stored on the computer readable storage
medium may include one or more of: source code, assembly
language code, object code, or other instruction format that is
interpreted by one or more processors. Some operations in
method 800 may be combined and/or the order of some opera-
tions may be changed.

An OR_Scanner can be represented as an operator that
includes a plurality of operands, such as OR(operand 1, oper-
and 2, operand 3, . . .). At a high level, the OR_Scanner
implements a logical OR operator which implies that every
result from a source scanner (e.g., filter scanners or logical-
relationship scanners) associated with the operands should be
returned as a matching result. However, special care should
be taken to ensure that results are returned in a predefined sort
order. This can be implemented through the use of a priority
queue that stores the next result from each scanner. When a
result is pulled of the top of this priority queue, the next result
from the scanner that provided the result pulled off of the
priority queue is added back into the priority queue before
another result is returned by the OR_Scanner. An OR_Scan-
ner using this implementation is particularly advantageous
when combined with other logical-relationship scanners
(e.g., when one or more of the operands is, itself a logical-
relationship scanner such as an AND_Scanner or a
NOT_Scanner). In these circumstances, the Server 106 will
be able to efficiently skip large sections of results for all
operands of the OR_Scanner that do not match any one of the
logical-relationship scanners. In other words, the OR_Scan-
ner enables the minimum value used in the OR_Scanner to be
shared by the other logical-relationship scanners. Thus the
performance of the OR_Scanner is usually much more effi-
cient than simply performing multiple search queries and
combining the results.

Server 106 receives, from Client 102, a search query
including filter criteria. The filter criteria specify a plurality of
operands including a first operand associated with one or
more filters, a second operand associated with one or more
filters and a logical relationship (e.g., a Boolean OR) between
the plurality of operands, as described in greater detail above
with respect to FIG. 5. In response to the search query, Server
106 identifies a plurality of index portions including a first set
of'one or more index portions matching the filter(s) of the first
operand and a second set of one or more index portions
matching the filter(s) of the second operand. The index entries
in the first set of index portion(s) and the second set of index
portion(s) are sorted in a same sort order in accordance with
identifiers for the index entries, as described in greater detail
above with respect to FIGS. 4A-4C and 5. In some imple-

10

15

20

25

30

35

40

45

50

55

60

65

30

mentations, the sort order is determined in accordance with
sort criteria specified in the search criteria (e.g., a user-speci-
fied custom sort order), the sort criteria including a set of one
or more predefined sort parameters and corresponding sort
directions. In some other implementations the sort order is
determined in accordance with unique identifiers of index
entries (e.g., a default sort order).

After receiving the search query, Server 106 identifies one
or more matching entities that match the search query. In
some implementations, identifiers are postfixes for the index
entries, each of the postfixes including a unique identifier for
an entity associated with the index entry and optionally a
value for one or more property used as a sort criteria for the
sort order. Identifying the matching entities includes identi-
fying (802) a plurality of candidate identifiers including a
respective candidate identifier for each respective operand in
the plurality of operands. Server 106 identifies, (804) in the
first set of index portion(s), a first set of one or more index
entries having a first identifier with a value closest to a pre-
defined end of a range of identifier values in the first set of
index portion(s) and matching the filter(s) of the first operand,
where the first identifier comprises the respective candidate
identifier for the first operand. Typically, the predefined end
corresponds to the lowest possible or highest possible iden-
tifier of an index entry that matches the respective filter. In
other words, the predefined end of the range of identifier
values is the end from which the search proceeds (which
could also be termed a “beginning” of the range of identifier
values). For example, if the search proceeds in ascending
order through the identifiers in a respective index or index
portion, the predefined end is a minimum value (e.g., 0, or the
value of the identifier for the first matching index entry in the
respective index or index portion). In contrast, if the search
proceeds in descending order through the identifiers in a
respective index or index portion, the predefined end is a
maximum value for the identifiers (e.g., 256 if the identifiers
are 8-bit binary numbers, or the value of the identifier for the
first matching index entry in the respective index or index
portion).

Similarly, Server 106 also identifies, (806) in the second set
of'index portion(s), a second set of one or more index entries
having a second identifier with a value closest to the pre-
defined end of the range of identifier values in the second set
of index portion(s) and matching the filter(s) of the second
operand, where the second identifier comprises the respective
candidate identifier for the second operand. More generally, it
should be noted that this process of identifying the plurality of
candidate identifiers can include identifying candidate iden-
tifiers for any number of operands. Usually, a candidate iden-
tifier will be generated for each operand. However, in some
circumstances there may not be any index entries that match
the filter(s) of a respective operand and thus there would not
be any candidate identifier from the respective operand in the
plurality of candidate identifiers. However, even in these situ-
ations, there would still be candidate identifiers for other
operands.

Afteridentifying the candidate identifiers, Server 106 com-
pares (808) the plurality of candidate identifiers to each other
to identify a candidate identifier that is closest to the pre-
defined end of the range of identifier values (e.g., the highest
or lowest candidate identifier). When the first identifier (810)
is the candidate identifier closest to the predefined end of the
range of identifier values, Server 106 marks (812) an entity
associated with the first identifier as matching the search
query. Additionally, Server 106 also identifies (814) in the
first set of index portion(s), a third set of one or more index
entries having a third identifier that is sequentially adjacent to

US 9,195,698 B2

31

the first identifier in the sort order and matching the filter(s) of
the first operand. In some implementations, the first identifier
is removed from the plurality of candidate identifiers and the
third identifier is added to the plurality of candidate identifi-
ers.

Similarly, when the second identifier (816) is the candidate
identifier closest to the predefined end of the range of identi-
fier values, Server 106 marks (818) an entity associated with
the second identifier as matching the search query and iden-
tifies (820), in the second set of index portion(s), a fourth set
of one or more index entries having a fourth identifier that is
sequentially adjacent to the second identifier in the sort order
and matching the filter(s) of the second operand. In some
implementations, the second identifier is removed from the
plurality of candidate identifiers and the fourth identifier is
added to the plurality of candidate identifiers. In other words,
more generally, when an identifier is selected as a matching
identifier it is removed from the plurality of candidate iden-
tifiers and replaced with a next identifier, if any, from the set
of one or more indexes from which the matching identifier
originated. It should be understood that this process can be
repeated to produce any number of desired results (up to the
number of matching results in all of the sets of index por-
tions), with the results being produced one at a time and the
plurality of candidate identifiers being replaced as identifiers
for matching entities and removed from the plurality of can-
didate identifiers.

Additionally, while the preceding example has been given
with respect to a simple case where there are only two oper-
ands, as described above, the OR_Scanner can operate on any
number of operands. The additional operands would simply
each provide a candidate identifier for the plurality of candi-
date identifiers, which if selected would cause analogous
operations to be performed as described above with respect to
the first operand and the second operand. As a specific
example, when the search query includes a third operand
associated with one of more filters, Server 106 identifies a
third set of one or more index portions matching the filter(s)
of the third operand.

After identifying the third set of one or more index por-
tions, Server 106 identifies, in the third set of index portion(s),
a fifth set of one or more index entries having a fifth identifier
with a value closest to the predefined end of the range of
identifier values in the third set of index portion(s) and match-
ing the filter(s) of the third operand, where the fifth identifier
comprises the respective candidate identifier for the third
operand. As described above, Server 106 compares the plu-
rality of candidate identifiers to each other to identify a can-
didate identifier that is closest to the predefined end of the
range of identifier values. When the fifth identifier is the
candidate identifier closest to the predefined end of the range
of identifier values, Server 106 marks an entity associated
with the fifth identifier as matching the search query and also
identifies, in the third set of index portion(s), a sixth set of one
or more index entries having a sixth identifier that is sequen-
tially adjacent to the fifth identifier in the sort order and
matching the filter(s) of the third operand. In some implemen-
tations, the first identifier is removed from the plurality of
candidate identifiers and the third identifier is added to the
plurality of candidate identifiers. It should be understood that
there could be an arbitrary number of operands, and an analo-
gous set of operations would be performed for each additional
operand.

In some situations, after identifying one or more matching
entities, when all matching entities have been identified or a
predefined limit on the number of matching entities to iden-
tify has been reached, Server 106 transmits representations of

20

30

40

45

32

one or more of the matching entities to Client 102, as
described in greater detail above with reference to FIG. 5.

Additionally, while the preceding examples have been
described with reference to a situation where the OR_Scanner
produced final results for transmission to Client 102, it should
be understood that similar operations could be performed
when the OR_Scanner produces intermediate results as an
operand of a different scanner (e.g., an AND_Scanner, a
NOT_Scanner or another OR_Scanner), with the difference
that the intermediate results would be used as inputs for the
different scanner rather being returned as search results to
Client 102.

It should be understood that the particular order in which
the operations in FIG. 8 have been described are merely
exemplary and are not intended to indicate that the described
order is the only order in which the operations could be
performed. One of ordinary skill in the art would recognize
various ways to reorder the operations described herein.
Additionally, it should be noted that details of other processes
described herein with respect to methods 500, 600, 700 and
900 (e.g., FIG. 5, 6A-6B, 7 or 9A-9B respectively) are also
applicable in an analogous manner to method 800 described
above with respect to FIG. 8. For example, the operands,
matching entities and indexes described above with reference
to method 800 may have one or more of the characteristics of
the various operands, matching entities and indexes described
herein with reference to methods 500, 600, 700 and 900. For
brevity, these details are not repeated here.

Query Cursors

FIGS. 9A-9B include a flowchart representing a method
900 for coordinating successive search queries using a query
cursor, according to certain embodiments. Method 900 is,
optionally, governed by instructions that are stored in a non-
transitory computer readable storage medium and that are
executed by one or more processors of one or more servers
(e.g., Server 106, FIG. 3). Each of the operations shown in
FIGS. 9A-9B may correspond to instructions stored in a
computer memory or computer readable storage medium
(e.g., memory 306 of Server 106 in FIG. 3). The computer
readable storage medium may include a magnetic or optical
disk storage device, solid state storage devices such as Flash
memory, or other non-volatile memory device or devices. The
computer readable instructions stored on the computer read-
able storage medium may include one or more of: source
code, assembly language code, object code, or other instruc-
tion format that is interpreted by one or more processors.
Some operations in method 900 may be combined and/or the
order of some operations may be changed.

Query cursors allow Server 106 to perform a search query
and retrieve a batch of results, then fetch additional results for
the same search query in a subsequent web request without
the overhead of a query offset. After Server 106 fetches some
results for a search query, it can generate an encoded string
that represents the location in the result set after the last result
fetched (the “query cursor”). Server 106 can use the query
cursor to fetch additional results starting from that stopping
point at a later time. In some implementations a query cursor
is an opaque base64-encoded string that represents the next
starting position of a search query after a prior search query.
Server 106 can provide a query cursor to other computers
(e.g., Client 102 or other servers) to be embedded in web
pages as HIT'TP GET or POST parameters. In some imple-
mentations, Server 106 stores the query cursor for later use so
that when another Client 102 requests performance of the
same search query and includes the query cursor with the

US 9,195,698 B2

33

search query, Server 106 is able to start returning results from
the location represented by the query cursor. An exemplary
method for using query cursors for a broad range of queries
including queries that are different from the queries from
which the query cursors were generated is described below.

Client 102 sends (902) a first search query, and Server 106
receives (904) the first search query. In response to the first
search query, Server 106 generates (906) a first set of search
results corresponding to the first search query by searching in
a first set of one or more index portions (e.g., as described in
greater detail above with reference to FI1G. 5). Server 106 also
generates (908) a query cursor corresponding to the search
query, where the query cursor indicates a location, in the first
set of index portions, of a respective index entry correspond-
ing to a respective result in the first set of search results. After
generating the query cursor and the search results, Server 106
sends (910), to Client 102, a representation of at least a
portion of the first set of search results and the query cursor.
Client 102 receives (912) the search results for the search
query, where the search results include (914) the query cursor
generated by Server 106 in response to the first search query.

Atsome later point in time, Client 102 sends (920) asecond
search query to Server 106, where the second search query
includes (922) a query cursor (e.g., the query cursor generated
by Server 106 in response to the first search query). Alterna-
tively, or in addition, Client 102 or Server 106 generates a
query cursor based on information about the original search
or even a particular entity identified by a user of Client 102.
Server 106 receives (930), from Client 102, a second search
query including the query cursor.

In some implementations, the query cursor is still valid
even when one or more of the following conditions are true:
the second search query and/or the indexes/index portions
that will be used to generate a response to the second search
query are different from the first search query and/or the
indexes/index portions that were used to generate a response
to the first search query; the search terms in the first search
query are different from the search terms in the second search
query; the first search query specifies a sort order that is
different from a sort order of the second search query; the first
search query specifies a first set of one or more predefined sort
parameters for sorting that is different from a second set of
one or more predefined sort parameters for sorting that is
specified by the second search query; the first search query
requests results in a predefined range that is different from a
predefined range of results requested by the second search
query; and/or the first search query specifies a logical rela-
tionship between search terms that is different from a logical
relationship between search terms in the second search query.

In some implementations, the query cursor is valid for the
second search query only if the second search query includes
only search terms from the first search query. As described in
greater detail above, in some implementations, a particular
index can be used for multiple queries, so long as the prop-
erties by which the index entries are sorted are the same for
both queries. Thus, if the first search query and the second
search query use the same index, then a location specified by
the query cursor in the index for the first search query will be
valid for the index used by the same search query. In other
words, in some implementations, the search terms are filters
(e.g., parameter=value) and the second search query must
include the same filters or a subset of the filters used by the
first search query, however the query cursor will be valid even
when some search terms are omitted, a specified range of
results are changed, a sort order is changed and/or a logical
relationship between the search terms is changed. Addition-

30

35

40

45

50

55

60

65

34

ally, in some situations, the current search query has opposite
sort order from the prior search query.

One situation where a current search order is frequently the
opposite of a prior search order is where a user is paging
forward or backward through sets of results for a single search
query. For example, when viewing a set of search results (e.g.,
emails in a web email account matching a user submitted
search query), the user may initially request to view a first
twenty matching results, then request page forward to a sec-
ond twenty matching results and a third twenty matching
results. However, if these searches are performed using the
methods described in greater detail above, which return
search results sequentially in accordance with a sort order of
the index portions used to execute the search query, a search
query can only proceed in the direction of the sort order from
the query cursor. Thus, in these implementations, a query
cursor must be located at or prior to the index entry for the
next search result to be returned. Consequently, in these
implementations it is difficult to page backwards through
results if query cursors correspond to a last result of the
previous set of results, because the same indexes cannot be
used to run the search query in reverse.

However, given that paging backwards in search results is
a frequently requested operation, it would be advantageous to
enable paging backwards through search results. One way to
enable paging backwards through search results is simply to
record each query cursor corresponding to the beginning of
each page, so that when the user returns to a previous page, the
stored query cursor can be used to generate search results for
that page. However, this solution is inefficient and can require
storing a very large number of old query cursors against the
possibility (however remote) that the user may at some point
in the future request to display a previously displayed set of
search results.

In contrast, a more efficient solution is to simply reverse the
search order (e.g., by executing a search with the same filters
on a set of one or more index portions that have an opposite
search order) and use a query cursor to identify a starting
point for the search. However, as described above, in imple-
mentations where the search results are sequentially identi-
fied based on a sort order of the index portions in which they
are identified, a search query cannot be performed over the
same set of indexes when the direction is reversed. Instead, a
new set of index portions that are sorted in the desired sort
order (which in this case is the opposite of the previous sort
order) is identified. However, in order to page backwards it is
important to start from the location expected by the user (e.g.,
a location corresponding to a result after the first result in the
current result set) so as to provide expected results. This
location can then be used as a starting point for the search by
searching forwards from the starting point in the opposite
search order, which is essentially searching “backwards.”
Thus, it would be desirable to use some information from the
previously retrieved set of search results to determine where
to start the subsequent search query.

Thus, in some implementations, components that were
used to generate a prior query cursor are used to identify a
location within the index portions used for the current search
query (e.g., the index portions with the reversed search order).
This enables Server 106 to scan forward from the query
cursor in the index portions used for the current search query
so as to generate a previous set of twenty results. This
approach to providing the ability page backward through
results is more efficient than other approaches, because this
approach enables paging backward through an arbitrary num-
ber of prior results sets while only requiring that at most two
query cursors be stored (e.g., a query cursor indicating a

US 9,195,698 B2

35

beginning of the search results for paging backward and a
query cursor indicating an end of the search results for paging
forward). Optionally other query cursors could be stored to
identify other predefined locations within the search results
(e.g., “advance five pages” or “go back five pages”). Addi-
tionally, while the preceding example has been discussed
with reference to a particular instance where a query cursor
from a prior query is used to identify a location in one or more
index portions to start a current query, it should be understood
that many other situations exist to which the general prin-
ciples described below could be applied to improve effi-
ciency, accuracy and/or speed of performing search queries.
Moreover, the ability to translate query cursors between index
portions of different indexes is particularly advantageous in
systems where different search queries are performed using
different indexes, as described above, because in such sys-
tems, indexes will frequently change between search queries.

In response to the second search query (e.g., the search
query that includes the query cursor), Server 106 generates
(932) a second set of search results corresponding to the
second search query by searching in a second set of one or
more index portions starting at a location in the second set of
index portions identified using the query cursor. In some
situations, the query cursor generated in response to the first
search query is the same as the query cursor used to generate
the second set of search results. For example, when the first
search query and the second search query have results sorted
in the same sort order in accordance with postfixes of the
index entries and the query cursor is based on the postfix of a
last index entry returned for the first search query, the query
cursor can also be used, without translation to identify a
location in the index portions for the second search query. In
contrast, in other situations, the query cursor generated in
response to the first search query is the different from the
query cursor used to generate the second set of search results.
For example, when the first search query and the second
search query have results sorted in the different sort orders in
accordance with postfixes of the index entries and the
received query cursor must be translated so as to properly
identify a location within the index portions for the second
search query.

In some implementations, the “location” specified by a
query cursor is an indication that the starting location in one
or more index portions is a postfix of a last matching index
entry for a previous search query. In some other implemen-
tations the “location” specified by a query cursor is an indi-
cation that the starting location in one or more index portions
is sequentially adjacent to a postfix of a last matching index
entry for a previous search query. As one example, the “loca-
tion” specifies that the search query is to start with an index
entry in the index portion that has a postfix that is adjacent to
and greater than the postfix of the last matching index entry
(e.g., a sequentially “next” index entry in the index portions).
It should be understood that, the location of a query cursor is
notarelative position in the list (e.g., it is not an offset), rather
the query cursor includes a value (e.g., a postfix) that enables
Server 106 jump to a particular location in an index or index
portion and begin a scan from that location (e.g., using a filter
scanner or a logical-relationship scanner, as described in
greater detail above). When the scan is a scan performed by a
logical-relationship scanner (e.g., AND(A=1, B=0)), the
query cursor identifies a location in each of the index portions
corresponding to each of the operands of the logical-relation-
ship scanner, to coordinate the starting location for the search
query with all of the index portions used to perform the search

query.

30

40

45

36

It should be understood that, if the contents of an index
change between uses of a particular query cursor in a way that
would affect results of the search query, only changes that
occur in index portions at locations after the location corre-
sponding to the position of the query cursor affect the search
results. For example, if a new index entry appears “behind”
the query cursor (e.g., at a position in the index portion that
the query cursor indicates has already been searched), the
new index entry will not be returned in response to the same
search query that includes the query cursor. Similarly, if an
index entry that was previously identified as a result for the
search query has been modified so that it is no longer a result
for the search query, but appeared “behind” the query cursor,
the results that are generated in response to a subsequent
execution of the search query using the query cursor (e.g.,
based on index entries “in front of”” the query cursor) do not
change. An additional advantage of the query cursor
described herein is that even if the index entry corresponding
to the last result in the previous set of results is removed from
the index portion in between search query executions, the
query cursor provides information in a way that still enables
Server 106 to locate a next result. Thus updates to an index do
not invalidate the query cursor.

In some implementations, the query cursor identifies a
location in a plurality of different index portions. (e.g., a
location in each index portion used to respond to the search
query). In some implementations, the query cursor is sort
order dependent. In other words, the query cursor is associ-
ated with a location of a particular index entry in a particular
sort order, and thus changing the sort order will render the
query cursor invalid. However, even when the received query
cursor is invalid, in some implementations it is possible to
extract useful information from the received query cursor
either by generating a new query cursor or using components
from the query cursor to identity a location in index portions
for the second search query that corresponds to a location
identified by the query cursor.

Inparticular, in some implementations, generating the sec-
ond set of search results includes translating (934) the query
cursor (e.g., the query cursor generated by Server 106 in
response to the first search query) to generate a new query
cursor. When translating the query cursor, Server 106 decom-
poses (936) the query cursor into a plurality of components.
These components optionally include a component that cor-
responds to a key (unique identifier) for an entity matching
the prior search query. The components also include alterna-
tively orin addition, one or more components that correspond
to respective values of predefined filter and/or sort parameter
associated with the entity (e.g., date, relevance, etc.) in the
prior search query. In some implementations, the query cur-
sor is the postfix of an index entry identified as matching a
previous search query or a value based on the postfix (e.g., a
hash of a postfix) for such an index entry. As discussed above
a postfix for an index entry includes a key, any values for
properties used to sort the index portion, and optionally any
values for properties used to execute inequality/range filters
when performing a search query. Thus, decomposing the
query cursor optionally includes identifying individual val-
ues for properties that were a part of the postfix for an index
entry that was a result for the prior search query.

After decomposing the query cursor received in response
to the first search query, Server 106 generates (938) a trans-
lated query cursor using one or more of the components. In
one implementation, the components of the query cursor are
the key and any values used to sort or perform inequality/
range filters (e.g., the key and values from the postfix). Thus,
if a search query is performed with all or a subset of these sort

US 9,195,698 B2

37

values, a query cursor in the index portions for responding to
the second search query can be generated using the key and
whatever set or subset of the values would be expected to
appear in a postfix in index entries for the second search
query. In some implementations, the plurality of components
of the query cursor corresponding to the prior search query
have a first order, and Server 106 generates the translated
query cursor by rearranging one or more of the components
into a second order different from the first order. As one
example, the first order of the components of the query cursor
is an order in which properties are used to sort the index
portion that was used for executing the prior search query. In
the embodiments described above with reference to FIGS.
4A-4C, the order would be the order of the columns. Con-
tinuing this example, the second order would be an order in
which properties are used to sort the index portion(s) used for
executing the current search query. Thus, the components of
a query cursor can be rearranged so that they provide infor-
mation enabling Server 106 to construct a translated query
cursor that identifies a location within index portions that will
be used to execute the current search query. For example, a
query cursor that was generated from a postfix including the
values A=1, C=bar, key=4 could be translated to a query
cursor corresponding to a postfix where: C=bar, A=1, key=4,
apostfix where A=1, key=4, a postfix where C=bar, key=4 or
a postfix where key=4. Referring specifically to the exem-
plary indexes in FIG. 4C, a query cursor with a postfix where
C=bar, key=4 would identify a location in Index 142-AC
(e.g., the first row of the index portion where A=1 in Index
142-AC) and alocation in Index 142-BC (e.g., the third row of
the index portion where B=0 in Index 142-BC) and can be
translated to identify a location in Index CA (e.g., the third
row of the index portion for C=bar in Index 142-CA).

After generating the translated query cursor, Server 106
identifies (940) a location in the index portions in the second
set of index portions to start performing the second search
query based on a location of the translated query cursor in the
second set of index portions. In some situations the first set of
index portions and the second set of index portions include
one or more common index portions. In other situations, the
first set of index portions will be distinct from the second set
of'index portions. In other words, the query cursor from a first
search query executed over a particular index portion can be
used to find a corresponding location in a different index
portion. In some implementations, identifying the location in
the second set of one or more index portions to start perform-
ing the current search query based on the translated query
cursor includes identifying the location in the second set of
one or more index portions based on one or more of the
predefined sort criteria of the prior search query. For example,
if the prior search query was “A=1, B=0, Sort by Date, Sort by
Relevance” and the current search query is “A=1, B=0, Sort
by Relevance,” the translated query cursor would use a key
and a value of relevance for an index entry in the index portion
used to execute the first search query to generate the trans-
lated query cursor.

In some implementations, after Server 106 has generated
the second set of search results, Server 106 generates (942) a
new query cursor that indicates a stopping point of a search
performed using the second search query. Server 106 sends
(944), to Client 102 search results including representation of
at least a portion of the second set of results. Client 106
receives (946) the search results for second search query. In
some implementations, the second set of search results
include the new query cursor. This new query cursor can be
used in the same way as the query cursor generated based on
the first search query (e.g., used to identify a starting location

25

30

40

45

38

and/or translated to generate a translated query cursor that is
used to identify a starting location in a different index).

Additionally, it should be noted that a query cursor can be
generated based on an arbitrary or user selected search result.
For example, a user requests that a next search query start
with a particular search result from the results sent to Client
102 in response to the first search query. Server 106 responds
to the request by using information known about the particu-
lar search result to identify a postfix that corresponded to the
particular search result and generating a query cursor based
on that user selected search result. This custom query cursor
generated based on the particular search result selected by the
user can be used in the same way as any of the other query
cursors described herein.

An interesting application of query cursors is to monitor
entities for unseen updates to entities. For example, if Server
106 sets a timestamp property with the current date and time
every time an entity is updated, Client 106 can use a search
query with sort criteria specifying that the results of the search
query be sorted by the timestamp property, ascending. In this
example, Server 106 can store a query cursor that indicates a
most recently updated result and therefore indicated when
index entries are moved to the end of the index portion. If an
entity’s timestamp is updated, the search query with the
stored query cursor will return the updated entity and Server
106 updates the query cursor to correspond to the most
recently updated entity and timestamp. In contrast, if no enti-
ties have been updated since the last time the search query was
performed, the search query with the stored query cursor will
not return any results, and the query cursor is not updated.

Additionally, while the preceding embodiments have been
described with reference to using a single query cursor to
identify a stopping point of a last search query and thus to
identify a starting point of a subsequent search query, the use
of'multiple query cursors is contemplated. For example, when
retrieving search query results, Server 106 can use both a start
query cursor and an end query cursor to return a continuous
group of results from the a set of one or more index portions
(e.g., return all results matching the search query with dates
between Apr. 2, 2011 and Apr. 21, 2011). It should be under-
stood that when using a start query cursor and end query
cursor to retrieve the results, it is not guaranteed that the size
of' the results will be the same as when the start query cursor
and the end query cursor were generated. In particular, index
entries may have been added to or deleted from the index
portions between the time the query cursors were generated
and when they are used to perform the search query. However,
such an approach advantageously enables a Client 102 to
specify a persistent predefined range of values for a sort
parameter and efficiently return all matches to a search query
that fall within the range of values for the sort parameter.

It should be understood that the particular order in which
the operations in FIGS. 9A-9B have been described are
merely exemplary and are not intended to indicate that the
described order is the only order in which the operations
could be performed. One of ordinary skill in the art would
recognize various ways to reorder the operations described
herein. Additionally, it should be noted that details of other
processes described herein with respect to methods 500, 600,
700 and 800 (e.g., FIG. 5, 6 A-6B, 7 or 8 respectively) are also
applicable in an analogous manner to method 900 described
above with respect to FIGS. 9A-9B. For example, the search
queries, query cursors and search results described above
with reference to method 900 may have one or more of the
characteristics of the various search queries, query cursors

US 9,195,698 B2

39
and search results described herein with reference to methods
500, 600, 700 and 800. For brevity, these details are not
repeated here.

The foregoing description, for purpose of explanation, has
been described with reference to specific embodiments. How-
ever, the illustrative discussions above are not intended to be
exhaustive or to limit the invention to the precise forms dis-
closed. Many modifications and variations are possible in
view of the above teachings. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, to thereby enable
others skilled in the art to best utilize the invention and vari-
ous embodiments with various modifications as are suited to
the particular use contemplated.

What is claimed is:

1. A method, comprising:

receiving, from a client, a search query including filter

criteria, wherein the filter criteria specify a plurality of
operands including a first operand associated with one or
more filters, a second operand associated with one or
more filters and a logical relationship between the plu-
rality of operands; and

in response to the search query:

identifying a plurality of index portions including a first
set of one or more index portions matching the filter(s)
of the first operand and a second set of one or more
index portions matching the filter(s) of the second
operand, wherein index entries in the first set of index
portion(s) and the second set of index portion(s) are
sorted in a same sort order in accordance with identi-
fiers for the index entries;
identifying one or more matching entities that match the
search query, wherein the identifying includes:
identifying a plurality of candidate identifiers includ-
ing a respective candidate identifier for each
respective operand in the plurality of operands,
including:
identifying, in the first set of index portion(s), a first
set of one or more index entries having a first
identifier with a value closest to a predefined end
of a range of identifier values in the first set of
index portion(s) and matching the filter(s) of the
first operand, wherein the first identifier com-
prises the respective candidate identifier for the
first operand;
identifying, in the second set of index portion(s), a
second set of one or more index entries having a
second identifier with a value closest to the pre-
defined end of the range of identifier values in the
second set of index portion(s) and matching the
filter(s) of the second operand, wherein the sec-
ond identifier comprises the respective candidate
identifier for the second operand;
comparing the plurality of candidate identifiers to
each other to identify a candidate identifier that is
closest to the predefined end of the range of iden-
tifier values, and:
in accordance with a determination that the first
identifier is the candidate identifier closest to the
predefined end of the range of identifier values,
marking an entity associated with the first iden-
tifier as matching the search query and identify-
ing, in the first set of index portion(s), a third set
of'one or more index entries having a third iden-
tifier that is sequentially adjacent to the first
identifier in the sort order and matching the
filter(s) of the first operand; and

10

—_
w

20

25

30

35

40

45

50

55

60

40

in accordance with a determination that the second
identifier is the candidate identifier closest to the
predefined end of the range of identifier values,
marking an entity associated with the second
identifier as matching the search query and iden-
tifying, in the second set of index portion(s), a
fourth set of one or more index entries having a
fourth identifier that is sequentially adjacent to
the second identifier in the sort order and match-

ing the filter(s) of the second operand; and
transmitting representations of one or more of the match-

ing entities to the client.

2. The method of claim 1, wherein the plurality of operands
includes a third operand associated with one of more filters,
and the method comprises:

identifying a third set of one or more index portions match-

ing the filter(s) of the third operand;

identifying, in the third set of index portion(s), a fifth set of

one or more index entries having a fifth identifier with a
value closest to the predefined end of the range of iden-
tifier values in the third set of index portion(s) and
matching the filter(s) of the third operand, wherein the
fifth identifier comprises the respective candidate iden-
tifier for the third operand; and

in accordance with a determination that the fifth identifier

is the candidate identifier closest to the predefined end of
the range of identifier values, marking an entity associ-
ated with the fifth identifier as matching the search query
and identifying, in the third set of index portion(s), a
sixth set of one or more index entries having a sixth
identifier that is sequentially adjacent to the fifth identi-
fier in the sort order and matching the filter(s) of the third
operand.

3. The method of claim 1, wherein the logical relationship
between the plurality of operands is a Boolean OR.

4. The method of claim 1, wherein the sort order is deter-
mined in accordance with sort criteria specified in the search
criteria, the sort criteria including a set of one or more pre-
defined sort parameters and corresponding sort directions.

5. The method of claim 1, the search query specifies that no
more than a predefined number of identifiers are to be
retrieved, and the retrieving includes retrieving no more than
the predefined number of identifiers.

6. The method of claim 1, wherein the filters used for the
search query include only filters selected from one of the
following sets: a plurality of equality filters; one or more
equality filters and a single inequality filter; or one or more
equality filters and a single range filter.

7. The method of claim 1, wherein:

the plurality of index portions include a first index portion

identified in a first index and a second index portion
identified in a second index;

the first index is different from the second index;

the first index has a different overall sort order than the

second index; and

the first index portion and the second index portion are

sorted in the predefined sort order.

8. The method of claim 1, wherein:

each filter specifies a property having a plurality of differ-

ent possible values and a particular value of the property
that matches the filter; and

identifying a respective index portion for a respective oper-

and that has a respective filter and one or more pre-

defined sort parameters includes:

identifying an index that is sorted in accordance with the
one or more predefined sort parameters; and

US 9,195,698 B2

41

selecting, as the respective index portion, a portion of the
identified index that includes all of the index entries
having the particular value of the property that
matches the filter.
9. The method of claim 1, wherein:
the search query includes a plurality of sort criteria speci-
fying a set of one or more predefined sort parameters and
corresponding sort directions for sorting index entries in
the sort order;
the sort order is one of a plurality of sort orders;
the plurality of index portions are selected from a plurality
of indexes; and
the plurality of indexes include at least one distinct index
for each of the plurality of sort orders.
10. The method of claim 9, wherein the plurality of index

portions are selected from a set of index portions including:

an ascending index portion for the set of one or more
predefined sort parameters in which index entries are
sorted in accordance with ascending values of a particu-
lar predefined sort parameter in the set of predefined sort
parameters; and

a descending index portion for the set of one or more
predefined sort parameters in which index entries are
sorted in accordance with descending values of the par-
ticular predefined sort parameter in the set of one or
more predefined sort parameters.

11. The method of claim 1, wherein each respective oper-

and is one of:

a filter scanner for a respective filter, wherein the filter
scanner sequentially retrieves, in the sort order, identi-
fiers for index entries that match the respective filter
from an index portion associated with the respective
filter; and

a logical-relationship scanner, wherein the logical-rela-
tionship scanner sequentially retrieves identifiers for
index entries that match a logical relationship between
index entries sequentially retrieved by a combination of
two or more scanners each selected from the group con-
sisting of a filter scanner and another logical-relation-
ship scanner.

12. A search server system, comprising:

one or More processors;

memory; and

one or more programs, wherein the one or more programs
are stored in the memory and configured to be executed
by the one or more processors, the one or more programs
including instructions for:
receiving, from a client, a search query including filter

criteria, wherein the filter criteria specify a plurality of

operands including a first operand associated with one

or more filters, a second operand associated with one

or more filters and a logical relationship between the

plurality of operands; and

in response to the search query:

identifying a plurality of index portions including a
first set of one or more index portions matching the
filter(s) of the first operand and a second set of one
or more index portions matching the filter(s) of the
second operand, wherein index entries in the first
set of index portion(s) and the second set of index
portion(s) are sorted in a same sort order in accor-
dance with identifiers for the index entries;

identifying one or more matching entities that match
the search query, wherein the identifying includes:

10

15

20

25

30

35

40

45

42

identifying a plurality of candidate identifiers
including a respective candidate identifier for
each respective operand in the plurality of oper-
ands, including:
identifying, in the first set of index portion(s), a
first set of one or more index entries having a first
identifier with a value closest to a predefined end
of a range of identifier values in the first set of
index portion(s) and matching the filter(s) of the
first operand, wherein the first identifier com-
prises the respective candidate identifier for the
first operand;
identifying, in the second set of index portion(s),
a second set of one or more index entries having
a second identifier with a value closest to the
predefined end of the range of identifier values in
the second set of index portion(s) and matching
the filter(s) of the second operand, wherein the
second identifier comprises the respective can-
didate identifier for the second operand;
comparing the plurality of candidate identifiers to
each other to identity a candidate identifier that
is closest to the predefined end of the range of
identifier values, and:
in accordance with a determination that the first
identifier is the candidate identifier closest to the
predefined end of the range of identifier values,
marking an entity associated with the first iden-
tifier as matching the search query and identify-
ing, in the first set of index portion(s), a third set
of'one or more index entries having a third iden-
tifier that is sequentially adjacent to the first
identifier in the sort order and matching the
filter(s) of the first operand; and
in accordance with a determination that the sec-
ond identifier is the candidate identifier closest to
the predefined end of the range of identifier val-
ues, marking an entity associated with the sec-
ond identifier as matching the search query and
identifying, in the second set of index portion(s),
afourth set of one or more index entries having a
fourth identifier that is sequentially adjacent to
the second identifier in the sort order and match-
ing the filter(s) of the second operand; and
transmitting representations of one or more of the
matching entities to the client.
13. The search server system of claim 12, wherein the

50 plurality of operands includes a third operand associated with

60

65

one of more filters, and the one or more programs including
instructions for:

identifying a third set of one or more index portions match-
ing the filter(s) of the third operand;

identifying, in the third set of index portion(s), a fifth set of
one or more index entries having a fifth identifier with a
value closest to the predefined end of the range of iden-
tifier values in the third set of index portion(s) and
matching the filter(s) of the third operand, wherein the
fifth identifier comprises the respective candidate iden-
tifier for the third operand; and

in accordance with a determination that the fifth identifier
is the candidate identifier closest to the predefined end of
the range of identifier values, marking an entity associ-
ated with the fifth identifier as matching the search query
and identifying, in the third set of index portion(s), a
sixth set of one or more index entries having a sixth

US 9,195,698 B2

43

identifier that is sequentially adjacent to the fifth identi-
fier in the sort order and matching the filter(s) of the third
operand.

14. The search server system of claim 12, wherein the
logical relationship between the plurality of operands is a
Boolean OR.

15. The search server system of claim 12, wherein the sort
order is determined in accordance with sort criteria specified
in the search criteria, the sort criteria including a set of one or
more predefined sort parameters and corresponding sort
directions.

16. The search server system of claim 12, the search query
specifies that no more than a predefined number of identifiers
are to be retrieved, and the retrieving includes retrieving no
more than the predefined number of identifiers.

17. A non-transitory computer readable storage medium
storing one or more programs, the one or more programs
comprising instructions, which when executed by a computer
system with one or more processors, cause the computer
system to:

receive, from a client, a search query including filter crite-

ria, wherein the filter criteria specify a plurality of oper-
ands including a first operand associated with one or
more filters, a second operand associated with one or
more filters and a logical relationship between the plu-
rality of operands; and

respond to the search query by:

identifying a plurality of index portions including a first
set of one or more index portions matching the filter(s)
of the first operand and a second set of one or more
index portions matching the filter(s) of the second
operand, wherein index entries in the first set of index
portion(s) and the second set of index portion(s) are
sorted in a same sort order in accordance with identi-
fiers for the index entries;
identifying one or more matching entities that match the
search query, wherein the identifying includes:
identifying a plurality of candidate identifiers includ-
ing a respective candidate identifier for each
respective operand in the plurality of operands,
including:
identifying, in the first set of index portion(s), a first
set of one or more index entries having a first
identifier with a value closest to a predefined end
of a range of identifier values in the first set of
index portion(s) and matching the filter(s) of the
first operand, wherein the first identifier com-
prises the respective candidate identifier for the
first operand;
identifying, in the second set of index portion(s), a
second set of one or more index entries having a
second identifier with a value closest to the pre-
defined end of the range of identifier values in the
second set of index portion(s) and matching the
filter(s) of the second operand, wherein the sec-
ond identifier comprises the respective candidate
identifier for the second operand;
comparing the plurality of candidate identifiers to
each other to identify a candidate identifier that is
closest to the predefined end of the range of iden-
tifier values, and:

10

15

20

25

30

35

40

45

50

55

60

44

in accordance with a determination that the first
identifier is the candidate identifier closest to the
predefined end of the range of identifier values,
marking an entity associated with the first iden-
tifier as matching the search query and identify-
ing, in the first set of index portion(s), a third set
of'one or more index entries having a third iden-
tifier that is sequentially adjacent to the first
identifier in the sort order and matching the
filter(s) of the first operand; and
in accordance with a determination that the second
identifier is the candidate identifier closest to the
predefined end of the range of identifier values,
marking an entity associated with the second
identifier as matching the search query and iden-
tifying, in the second set of index portion(s), a
fourth set of one or more index entries having a
fourth identifier that is sequentially adjacent to
the second identifier in the sort order and match-
ing the filter(s) of the second operand; and
transmitting representations of one or more of the match-
ing entities to the client.

18. The non-transitory computer readable storage medium
of'claim 17, wherein the plurality of operands includes a third
operand associated with one of more filters, and the one or
more programs including instructions for:

identifying a third set of one or more index portions match-

ing the filter(s) of the third operand;

identifying, in the third set of index portion(s), a fifth set of

one or more index entries having a fifth identifier with a
value closest to the predefined end of the range of iden-
tifier values in the third set of index portion(s) and
matching the filter(s) of the third operand, wherein the
fifth identifier comprises the respective candidate iden-
tifier for the third operand; and

in accordance with a determination that the fifth identifier

is the candidate identifier closest to the predefined end of
the range of identifier values, marking an entity associ-
ated with the fifth identifier as matching the search query
and identifying, in the third set of index portion(s), a
sixth set of one or more index entries having a sixth
identifier that is sequentially adjacent to the fifth identi-
fier in the sort order and matching the filter(s) of the third
operand.

19. The non-transitory computer readable storage medium
of claim 17, wherein the logical relationship between the
plurality of operands is a Boolean OR.

20. The non-transitory computer readable storage medium
of claim 17, wherein the sort order is determined in accor-
dance with sort criteria specified in the search criteria, the sort
criteria including a set of one or more predefined sort param-
eters and corresponding sort directions.

21. The non-transitory computer readable storage medium
of claim 17, the search query specifies that no more than a
predefined number of identifiers are to be retrieved, and the
retrieving includes retrieving no more than the predefined
number of identifiers.

